org.apache.lucene.search.similarities.MultiSimilarity Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.search.similarities;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.lucene.index.FieldInvertState;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.search.CollectionStatistics;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.TermStatistics;
import org.apache.lucene.util.BytesRef;
/**
* Implements the CombSUM method for combining evidence from multiple
* similarity values described in: Joseph A. Shaw, Edward A. Fox.
* In Text REtrieval Conference (1993), pp. 243-252
* @lucene.experimental
*/
public class MultiSimilarity extends Similarity {
/** the sub-similarities used to create the combined score */
protected final Similarity sims[];
/** Creates a MultiSimilarity which will sum the scores
* of the provided sims
. */
public MultiSimilarity(Similarity sims[]) {
this.sims = sims;
}
@Override
public long computeNorm(FieldInvertState state) {
return sims[0].computeNorm(state);
}
@Override
public SimWeight computeWeight(CollectionStatistics collectionStats, TermStatistics... termStats) {
SimWeight subStats[] = new SimWeight[sims.length];
for (int i = 0; i < subStats.length; i++) {
subStats[i] = sims[i].computeWeight(collectionStats, termStats);
}
return new MultiStats(subStats);
}
@Override
public SimScorer simScorer(SimWeight stats, LeafReaderContext context) throws IOException {
SimScorer subScorers[] = new SimScorer[sims.length];
for (int i = 0; i < subScorers.length; i++) {
subScorers[i] = sims[i].simScorer(((MultiStats)stats).subStats[i], context);
}
return new MultiSimScorer(subScorers);
}
static class MultiSimScorer extends SimScorer {
private final SimScorer subScorers[];
MultiSimScorer(SimScorer subScorers[]) {
this.subScorers = subScorers;
}
@Override
public float score(int doc, float freq) {
float sum = 0.0f;
for (SimScorer subScorer : subScorers) {
sum += subScorer.score(doc, freq);
}
return sum;
}
@Override
public Explanation explain(int doc, Explanation freq) {
List subs = new ArrayList<>();
for (SimScorer subScorer : subScorers) {
subs.add(subScorer.explain(doc, freq));
}
return Explanation.match(score(doc, freq.getValue()), "sum of:", subs);
}
@Override
public float computeSlopFactor(int distance) {
return subScorers[0].computeSlopFactor(distance);
}
@Override
public float computePayloadFactor(int doc, int start, int end, BytesRef payload) {
return subScorers[0].computePayloadFactor(doc, start, end, payload);
}
}
static class MultiStats extends SimWeight {
final SimWeight subStats[];
MultiStats(SimWeight subStats[]) {
this.subStats = subStats;
}
@Override
public float getValueForNormalization() {
float sum = 0.0f;
for (SimWeight stat : subStats) {
sum += stat.getValueForNormalization();
}
return sum / subStats.length;
}
@Override
public void normalize(float queryNorm, float boost) {
for (SimWeight stat : subStats) {
stat.normalize(queryNorm, boost);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy