org.apache.lucene.search.similarities.SimilarityBase Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.search.similarities;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.lucene.index.FieldInvertState;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.NumericDocValues;
import org.apache.lucene.search.CollectionStatistics;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.TermStatistics;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.SmallFloat;
/**
* A subclass of {@code Similarity} that provides a simplified API for its
* descendants. Subclasses are only required to implement the {@link #score}
* and {@link #toString()} methods. Implementing
* {@link #explain(List, BasicStats, int, float, float)} is optional,
* inasmuch as SimilarityBase already provides a basic explanation of the score
* and the term frequency. However, implementers of a subclass are encouraged to
* include as much detail about the scoring method as possible.
*
* Note: multi-word queries such as phrase queries are scored in a different way
* than Lucene's default ranking algorithm: whereas it "fakes" an IDF value for
* the phrase as a whole (since it does not know it), this class instead scores
* phrases as a summation of the individual term scores.
* @lucene.experimental
*/
public abstract class SimilarityBase extends Similarity {
/** For {@link #log2(double)}. Precomputed for efficiency reasons. */
private static final double LOG_2 = Math.log(2);
/**
* True if overlap tokens (tokens with a position of increment of zero) are
* discounted from the document's length.
*/
protected boolean discountOverlaps = true;
/**
* Sole constructor. (For invocation by subclass
* constructors, typically implicit.)
*/
public SimilarityBase() {}
/** Determines whether overlap tokens (Tokens with
* 0 position increment) are ignored when computing
* norm. By default this is true, meaning overlap
* tokens do not count when computing norms.
*
* @lucene.experimental
*
* @see #computeNorm
*/
public void setDiscountOverlaps(boolean v) {
discountOverlaps = v;
}
/**
* Returns true if overlap tokens are discounted from the document's length.
* @see #setDiscountOverlaps
*/
public boolean getDiscountOverlaps() {
return discountOverlaps;
}
@Override
public final SimWeight computeWeight(CollectionStatistics collectionStats, TermStatistics... termStats) {
BasicStats stats[] = new BasicStats[termStats.length];
for (int i = 0; i < termStats.length; i++) {
stats[i] = newStats(collectionStats.field());
fillBasicStats(stats[i], collectionStats, termStats[i]);
}
return stats.length == 1 ? stats[0] : new MultiSimilarity.MultiStats(stats);
}
/** Factory method to return a custom stats object */
protected BasicStats newStats(String field) {
return new BasicStats(field);
}
/** Fills all member fields defined in {@code BasicStats} in {@code stats}.
* Subclasses can override this method to fill additional stats. */
protected void fillBasicStats(BasicStats stats, CollectionStatistics collectionStats, TermStatistics termStats) {
// #positions(field) must be >= #positions(term)
assert collectionStats.sumTotalTermFreq() == -1 || collectionStats.sumTotalTermFreq() >= termStats.totalTermFreq();
long numberOfDocuments = collectionStats.maxDoc();
long docFreq = termStats.docFreq();
long totalTermFreq = termStats.totalTermFreq();
// codec does not supply totalTermFreq: substitute docFreq
if (totalTermFreq == -1) {
totalTermFreq = docFreq;
}
final long numberOfFieldTokens;
final float avgFieldLength;
long sumTotalTermFreq = collectionStats.sumTotalTermFreq();
if (sumTotalTermFreq <= 0) {
// field does not exist;
// We have to provide something if codec doesnt supply these measures,
// or if someone omitted frequencies for the field... negative values cause
// NaN/Inf for some scorers.
numberOfFieldTokens = docFreq;
avgFieldLength = 1;
} else {
numberOfFieldTokens = sumTotalTermFreq;
avgFieldLength = (float)numberOfFieldTokens / numberOfDocuments;
}
// TODO: add sumDocFreq for field (numberOfFieldPostings)
stats.setNumberOfDocuments(numberOfDocuments);
stats.setNumberOfFieldTokens(numberOfFieldTokens);
stats.setAvgFieldLength(avgFieldLength);
stats.setDocFreq(docFreq);
stats.setTotalTermFreq(totalTermFreq);
}
/**
* Scores the document {@code doc}.
*
Subclasses must apply their scoring formula in this class.
* @param stats the corpus level statistics.
* @param freq the term frequency.
* @param docLen the document length.
* @return the score.
*/
protected abstract float score(BasicStats stats, float freq, float docLen);
/**
* Subclasses should implement this method to explain the score. {@code expl}
* already contains the score, the name of the class and the doc id, as well
* as the term frequency and its explanation; subclasses can add additional
* clauses to explain details of their scoring formulae.
* The default implementation does nothing.
*
* @param subExpls the list of details of the explanation to extend
* @param stats the corpus level statistics.
* @param doc the document id.
* @param freq the term frequency.
* @param docLen the document length.
*/
protected void explain(
List subExpls, BasicStats stats, int doc, float freq, float docLen) {}
/**
* Explains the score. The implementation here provides a basic explanation
* in the format score(name-of-similarity, doc=doc-id,
* freq=term-frequency), computed from:, and
* attaches the score (computed via the {@link #score(BasicStats, float, float)}
* method) and the explanation for the term frequency. Subclasses content with
* this format may add additional details in
* {@link #explain(List, BasicStats, int, float, float)}.
*
* @param stats the corpus level statistics.
* @param doc the document id.
* @param freq the term frequency and its explanation.
* @param docLen the document length.
* @return the explanation.
*/
protected Explanation explain(
BasicStats stats, int doc, Explanation freq, float docLen) {
List subs = new ArrayList<>();
explain(subs, stats, doc, freq.getValue(), docLen);
return Explanation.match(
score(stats, freq.getValue(), docLen),
"score(" + getClass().getSimpleName() + ", doc=" + doc + ", freq=" + freq.getValue() +"), computed from:",
subs);
}
@Override
public SimScorer simScorer(SimWeight stats, LeafReaderContext context) throws IOException {
if (stats instanceof MultiSimilarity.MultiStats) {
// a multi term query (e.g. phrase). return the summation,
// scoring almost as if it were boolean query
SimWeight subStats[] = ((MultiSimilarity.MultiStats) stats).subStats;
SimScorer subScorers[] = new SimScorer[subStats.length];
for (int i = 0; i < subScorers.length; i++) {
BasicStats basicstats = (BasicStats) subStats[i];
subScorers[i] = new BasicSimScorer(basicstats, context.reader().getNormValues(basicstats.field));
}
return new MultiSimilarity.MultiSimScorer(subScorers);
} else {
BasicStats basicstats = (BasicStats) stats;
return new BasicSimScorer(basicstats, context.reader().getNormValues(basicstats.field));
}
}
/**
* Subclasses must override this method to return the name of the Similarity
* and preferably the values of parameters (if any) as well.
*/
@Override
public abstract String toString();
// ------------------------------ Norm handling ------------------------------
/** Norm to document length map. */
private static final float[] NORM_TABLE = new float[256];
static {
for (int i = 1; i < 256; i++) {
float floatNorm = SmallFloat.byte315ToFloat((byte)i);
NORM_TABLE[i] = 1.0f / (floatNorm * floatNorm);
}
NORM_TABLE[0] = 1.0f / NORM_TABLE[255]; // otherwise inf
}
/** Encodes the document length in the same way as {@link TFIDFSimilarity}. */
@Override
public long computeNorm(FieldInvertState state) {
final float numTerms;
if (discountOverlaps)
numTerms = state.getLength() - state.getNumOverlap();
else
numTerms = state.getLength();
return encodeNormValue(state.getBoost(), numTerms);
}
/** Decodes a normalization factor (document length) stored in an index.
* @see #encodeNormValue(float,float)
*/
protected float decodeNormValue(byte norm) {
return NORM_TABLE[norm & 0xFF]; // & 0xFF maps negative bytes to positive above 127
}
/** Encodes the length to a byte via SmallFloat. */
protected byte encodeNormValue(float boost, float length) {
return SmallFloat.floatToByte315((boost / (float) Math.sqrt(length)));
}
// ----------------------------- Static methods ------------------------------
/** Returns the base two logarithm of {@code x}. */
public static double log2(double x) {
// Put this to a 'util' class if we need more of these.
return Math.log(x) / LOG_2;
}
// --------------------------------- Classes ---------------------------------
/** Delegates the {@link #score(int, float)} and
* {@link #explain(int, Explanation)} methods to
* {@link SimilarityBase#score(BasicStats, float, float)} and
* {@link SimilarityBase#explain(BasicStats, int, Explanation, float)},
* respectively.
*/
private class BasicSimScorer extends SimScorer {
private final BasicStats stats;
private final NumericDocValues norms;
BasicSimScorer(BasicStats stats, NumericDocValues norms) throws IOException {
this.stats = stats;
this.norms = norms;
}
@Override
public float score(int doc, float freq) {
// We have to supply something in case norms are omitted
return SimilarityBase.this.score(stats, freq,
norms == null ? 1F : decodeNormValue((byte)norms.get(doc)));
}
@Override
public Explanation explain(int doc, Explanation freq) {
return SimilarityBase.this.explain(stats, doc, freq,
norms == null ? 1F : decodeNormValue((byte)norms.get(doc)));
}
@Override
public float computeSlopFactor(int distance) {
return 1.0f / (distance + 1);
}
@Override
public float computePayloadFactor(int doc, int start, int end, BytesRef payload) {
return 1f;
}
}
}