All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.util.fst.FST Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.util.fst;


import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.apache.lucene.codecs.CodecUtil;
import org.apache.lucene.store.ByteArrayDataOutput;
import org.apache.lucene.store.DataInput;
import org.apache.lucene.store.DataOutput;
import org.apache.lucene.store.InputStreamDataInput;
import org.apache.lucene.store.OutputStreamDataOutput;
import org.apache.lucene.store.RAMOutputStream;
import org.apache.lucene.util.Accountable;
import org.apache.lucene.util.Accountables;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.Constants;
import org.apache.lucene.util.PriorityQueue;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.packed.GrowableWriter;
import org.apache.lucene.util.packed.PackedInts;

// TODO: break this into WritableFST and ReadOnlyFST.. then
// we can have subclasses of ReadOnlyFST to handle the
// different byte[] level encodings (packed or
// not)... and things like nodeCount, arcCount are read only

// TODO: if FST is pure prefix trie we can do a more compact
// job, ie, once we are at a 'suffix only', just store the
// completion labels as a string not as a series of arcs.

// NOTE: while the FST is able to represent a non-final
// dead-end state (NON_FINAL_END_NODE=0), the layers above
// (FSTEnum, Util) have problems with this!!

/** Represents an finite state machine (FST), using a
 *  compact byte[] format.
 *  

The format is similar to what's used by Morfologik * (http://sourceforge.net/projects/morfologik). * *

See the {@link org.apache.lucene.util.fst package * documentation} for some simple examples. * * @lucene.experimental */ public final class FST implements Accountable { private static final long BASE_RAM_BYTES_USED = RamUsageEstimator.shallowSizeOfInstance(FST.class); private static final long ARC_SHALLOW_RAM_BYTES_USED = RamUsageEstimator.shallowSizeOfInstance(Arc.class); /** Specifies allowed range of each int input label for * this FST. */ public static enum INPUT_TYPE {BYTE1, BYTE2, BYTE4}; static final int BIT_FINAL_ARC = 1 << 0; static final int BIT_LAST_ARC = 1 << 1; static final int BIT_TARGET_NEXT = 1 << 2; // TODO: we can free up a bit if we can nuke this: static final int BIT_STOP_NODE = 1 << 3; /** This flag is set if the arc has an output. */ public static final int BIT_ARC_HAS_OUTPUT = 1 << 4; static final int BIT_ARC_HAS_FINAL_OUTPUT = 1 << 5; // Arcs are stored as fixed-size (per entry) array, so // that we can find an arc using binary search. We do // this when number of arcs is > NUM_ARCS_ARRAY: // If set, the target node is delta coded vs current // position: private static final int BIT_TARGET_DELTA = 1 << 6; // We use this as a marker (because this one flag is // illegal by itself ...): private static final byte ARCS_AS_FIXED_ARRAY = BIT_ARC_HAS_FINAL_OUTPUT; /** * @see #shouldExpand(Builder, Builder.UnCompiledNode) */ static final int FIXED_ARRAY_SHALLOW_DISTANCE = 3; // 0 => only root node. /** * @see #shouldExpand(Builder, Builder.UnCompiledNode) */ static final int FIXED_ARRAY_NUM_ARCS_SHALLOW = 5; /** * @see #shouldExpand(Builder, Builder.UnCompiledNode) */ static final int FIXED_ARRAY_NUM_ARCS_DEEP = 10; // Increment version to change it private static final String FILE_FORMAT_NAME = "FST"; private static final int VERSION_START = 0; /** Changed numBytesPerArc for array'd case from byte to int. */ private static final int VERSION_INT_NUM_BYTES_PER_ARC = 1; /** Write BYTE2 labels as 2-byte short, not vInt. */ private static final int VERSION_SHORT_BYTE2_LABELS = 2; /** Added optional packed format. */ private static final int VERSION_PACKED = 3; /** Changed from int to vInt for encoding arc targets. * Also changed maxBytesPerArc from int to vInt in the array case. */ private static final int VERSION_VINT_TARGET = 4; /** Don't store arcWithOutputCount anymore */ private static final int VERSION_NO_NODE_ARC_COUNTS = 5; private static final int VERSION_CURRENT = VERSION_NO_NODE_ARC_COUNTS; // Never serialized; just used to represent the virtual // final node w/ no arcs: private static final long FINAL_END_NODE = -1; // Never serialized; just used to represent the virtual // non-final node w/ no arcs: private static final long NON_FINAL_END_NODE = 0; /** If arc has this label then that arc is final/accepted */ public static final int END_LABEL = -1; public final INPUT_TYPE inputType; // if non-null, this FST accepts the empty string and // produces this output T emptyOutput; /** A {@link BytesStore}, used during building, or during reading when * the FST is very large (more than 1 GB). If the FST is less than 1 * GB then bytesArray is set instead. */ final BytesStore bytes; /** Used at read time when the FST fits into a single byte[]. */ final byte[] bytesArray; private long startNode = -1; public final Outputs outputs; private final boolean packed; private PackedInts.Reader nodeRefToAddress; private Arc cachedRootArcs[]; /** Represents a single arc. */ public static final class Arc { public int label; public T output; // From node (ord or address); currently only used when // building an FST w/ willPackFST=true: long node; /** To node (ord or address) */ public long target; byte flags; public T nextFinalOutput; // address (into the byte[]), or ord/address if label == END_LABEL long nextArc; /** Where the first arc in the array starts; only valid if * bytesPerArc != 0 */ public long posArcsStart; /** Non-zero if this arc is part of an array, which means all * arcs for the node are encoded with a fixed number of bytes so * that we can random access by index. We do when there are enough * arcs leaving one node. It wastes some bytes but gives faster * lookups. */ public int bytesPerArc; /** Where we are in the array; only valid if bytesPerArc != 0. */ public int arcIdx; /** How many arcs in the array; only valid if bytesPerArc != 0. */ public int numArcs; /** Returns this */ public Arc copyFrom(Arc other) { node = other.node; label = other.label; target = other.target; flags = other.flags; output = other.output; nextFinalOutput = other.nextFinalOutput; nextArc = other.nextArc; bytesPerArc = other.bytesPerArc; if (bytesPerArc != 0) { posArcsStart = other.posArcsStart; arcIdx = other.arcIdx; numArcs = other.numArcs; } return this; } boolean flag(int flag) { return FST.flag(flags, flag); } public boolean isLast() { return flag(BIT_LAST_ARC); } public boolean isFinal() { return flag(BIT_FINAL_ARC); } @Override public String toString() { StringBuilder b = new StringBuilder(); b.append("node=" + node); b.append(" target=" + target); b.append(" label=0x" + Integer.toHexString(label)); if (flag(BIT_FINAL_ARC)) { b.append(" final"); } if (flag(BIT_LAST_ARC)) { b.append(" last"); } if (flag(BIT_TARGET_NEXT)) { b.append(" targetNext"); } if (flag(BIT_STOP_NODE)) { b.append(" stop"); } if (flag(BIT_ARC_HAS_OUTPUT)) { b.append(" output=" + output); } if (flag(BIT_ARC_HAS_FINAL_OUTPUT)) { b.append(" nextFinalOutput=" + nextFinalOutput); } if (bytesPerArc != 0) { b.append(" arcArray(idx=" + arcIdx + " of " + numArcs + ")"); } return b.toString(); } }; private static boolean flag(int flags, int bit) { return (flags & bit) != 0; } private GrowableWriter nodeAddress; // TODO: we could be smarter here, and prune periodically // as we go; high in-count nodes will "usually" become // clear early on: private GrowableWriter inCounts; private final int version; // make a new empty FST, for building; Builder invokes // this ctor FST(INPUT_TYPE inputType, Outputs outputs, boolean willPackFST, float acceptableOverheadRatio, int bytesPageBits) { this.inputType = inputType; this.outputs = outputs; version = VERSION_CURRENT; bytesArray = null; bytes = new BytesStore(bytesPageBits); // pad: ensure no node gets address 0 which is reserved to mean // the stop state w/ no arcs bytes.writeByte((byte) 0); if (willPackFST) { nodeAddress = new GrowableWriter(15, 8, acceptableOverheadRatio); inCounts = new GrowableWriter(1, 8, acceptableOverheadRatio); } else { nodeAddress = null; inCounts = null; } emptyOutput = null; packed = false; nodeRefToAddress = null; } public static final int DEFAULT_MAX_BLOCK_BITS = Constants.JRE_IS_64BIT ? 30 : 28; /** Load a previously saved FST. */ public FST(DataInput in, Outputs outputs) throws IOException { this(in, outputs, DEFAULT_MAX_BLOCK_BITS); } /** Load a previously saved FST; maxBlockBits allows you to * control the size of the byte[] pages used to hold the FST bytes. */ public FST(DataInput in, Outputs outputs, int maxBlockBits) throws IOException { this.outputs = outputs; if (maxBlockBits < 1 || maxBlockBits > 30) { throw new IllegalArgumentException("maxBlockBits should be 1 .. 30; got " + maxBlockBits); } // NOTE: only reads most recent format; we don't have // back-compat promise for FSTs (they are experimental): version = CodecUtil.checkHeader(in, FILE_FORMAT_NAME, VERSION_PACKED, VERSION_NO_NODE_ARC_COUNTS); packed = in.readByte() == 1; if (in.readByte() == 1) { // accepts empty string // 1 KB blocks: BytesStore emptyBytes = new BytesStore(10); int numBytes = in.readVInt(); emptyBytes.copyBytes(in, numBytes); // De-serialize empty-string output: BytesReader reader; if (packed) { reader = emptyBytes.getForwardReader(); } else { reader = emptyBytes.getReverseReader(); // NoOutputs uses 0 bytes when writing its output, // so we have to check here else BytesStore gets // angry: if (numBytes > 0) { reader.setPosition(numBytes-1); } } emptyOutput = outputs.readFinalOutput(reader); } else { emptyOutput = null; } final byte t = in.readByte(); switch(t) { case 0: inputType = INPUT_TYPE.BYTE1; break; case 1: inputType = INPUT_TYPE.BYTE2; break; case 2: inputType = INPUT_TYPE.BYTE4; break; default: throw new IllegalStateException("invalid input type " + t); } if (packed) { nodeRefToAddress = PackedInts.getReader(in); } else { nodeRefToAddress = null; } startNode = in.readVLong(); if (version < VERSION_NO_NODE_ARC_COUNTS) { in.readVLong(); in.readVLong(); in.readVLong(); } long numBytes = in.readVLong(); if (numBytes > 1 << maxBlockBits) { // FST is big: we need multiple pages bytes = new BytesStore(in, numBytes, 1<[] arcs) { long size = 0; if (arcs != null) { size += RamUsageEstimator.shallowSizeOf(arcs); for (Arc arc : arcs) { if (arc != null) { size += ARC_SHALLOW_RAM_BYTES_USED; if (arc.output != null && arc.output != outputs.getNoOutput()) { size += outputs.ramBytesUsed(arc.output); } if (arc.nextFinalOutput != null && arc.nextFinalOutput != outputs.getNoOutput()) { size += outputs.ramBytesUsed(arc.nextFinalOutput); } } } } return size; } private int cachedArcsBytesUsed; @Override public long ramBytesUsed() { long size = BASE_RAM_BYTES_USED; if (bytesArray != null) { size += bytesArray.length; } else { size += bytes.ramBytesUsed(); } if (packed) { size += nodeRefToAddress.ramBytesUsed(); } else if (nodeAddress != null) { size += nodeAddress.ramBytesUsed(); size += inCounts.ramBytesUsed(); } size += cachedArcsBytesUsed; return size; } @Override public Collection getChildResources() { List resources = new ArrayList<>(); if (packed) { resources.add(Accountables.namedAccountable("node ref to address", nodeRefToAddress)); } else if (nodeAddress != null) { resources.add(Accountables.namedAccountable("node addresses", nodeAddress)); resources.add(Accountables.namedAccountable("in counts", inCounts)); } return resources; } @Override public String toString() { return getClass().getSimpleName() + "(input=" + inputType + ",output=" + outputs + ",packed=" + packed; } void finish(long newStartNode) throws IOException { assert newStartNode <= bytes.getPosition(); if (startNode != -1) { throw new IllegalStateException("already finished"); } if (newStartNode == FINAL_END_NODE && emptyOutput != null) { newStartNode = 0; } startNode = newStartNode; bytes.finish(); cacheRootArcs(); } private long getNodeAddress(long node) { if (nodeAddress != null) { // Deref return nodeAddress.get((int) node); } else { // Straight return node; } } // Optionally caches first 128 labels @SuppressWarnings({"rawtypes","unchecked"}) private void cacheRootArcs() throws IOException { // We should only be called once per FST: assert cachedArcsBytesUsed == 0; final Arc arc = new Arc<>(); getFirstArc(arc); if (targetHasArcs(arc)) { final BytesReader in = getBytesReader(); Arc[] arcs = (Arc[]) new Arc[0x80]; readFirstRealTargetArc(arc.target, arc, in); int count = 0; while(true) { assert arc.label != END_LABEL; if (arc.label < arcs.length) { arcs[arc.label] = new Arc().copyFrom(arc); } else { break; } if (arc.isLast()) { break; } readNextRealArc(arc, in); count++; } int cacheRAM = (int) ramBytesUsed(arcs); // Don't cache if there are only a few arcs or if the cache would use > 20% RAM of the FST itself: if (count >= FIXED_ARRAY_NUM_ARCS_SHALLOW && cacheRAM < ramBytesUsed()/5) { cachedRootArcs = arcs; cachedArcsBytesUsed = cacheRAM; } } } public T getEmptyOutput() { return emptyOutput; } void setEmptyOutput(T v) throws IOException { if (emptyOutput != null) { emptyOutput = outputs.merge(emptyOutput, v); } else { emptyOutput = v; } } public void save(DataOutput out) throws IOException { if (startNode == -1) { throw new IllegalStateException("call finish first"); } if (nodeAddress != null) { throw new IllegalStateException("cannot save an FST pre-packed FST; it must first be packed"); } if (packed && !(nodeRefToAddress instanceof PackedInts.Mutable)) { throw new IllegalStateException("cannot save a FST which has been loaded from disk "); } CodecUtil.writeHeader(out, FILE_FORMAT_NAME, VERSION_CURRENT); if (packed) { out.writeByte((byte) 1); } else { out.writeByte((byte) 0); } // TODO: really we should encode this as an arc, arriving // to the root node, instead of special casing here: if (emptyOutput != null) { // Accepts empty string out.writeByte((byte) 1); // Serialize empty-string output: RAMOutputStream ros = new RAMOutputStream(); outputs.writeFinalOutput(emptyOutput, ros); byte[] emptyOutputBytes = new byte[(int) ros.getFilePointer()]; ros.writeTo(emptyOutputBytes, 0); if (!packed) { // reverse final int stopAt = emptyOutputBytes.length/2; int upto = 0; while(upto < stopAt) { final byte b = emptyOutputBytes[upto]; emptyOutputBytes[upto] = emptyOutputBytes[emptyOutputBytes.length-upto-1]; emptyOutputBytes[emptyOutputBytes.length-upto-1] = b; upto++; } } out.writeVInt(emptyOutputBytes.length); out.writeBytes(emptyOutputBytes, 0, emptyOutputBytes.length); } else { out.writeByte((byte) 0); } final byte t; if (inputType == INPUT_TYPE.BYTE1) { t = 0; } else if (inputType == INPUT_TYPE.BYTE2) { t = 1; } else { t = 2; } out.writeByte(t); if (packed) { ((PackedInts.Mutable) nodeRefToAddress).save(out); } out.writeVLong(startNode); if (bytes != null) { long numBytes = bytes.getPosition(); out.writeVLong(numBytes); bytes.writeTo(out); } else { assert bytesArray != null; out.writeVLong(bytesArray.length); out.writeBytes(bytesArray, 0, bytesArray.length); } } /** * Writes an automaton to a file. */ public void save(final Path path) throws IOException { try (OutputStream os = new BufferedOutputStream(Files.newOutputStream(path))) { save(new OutputStreamDataOutput(os)); } } /** * Reads an automaton from a file. */ public static FST read(Path path, Outputs outputs) throws IOException { try (InputStream is = Files.newInputStream(path)) { return new FST<>(new InputStreamDataInput(new BufferedInputStream(is)), outputs); } } private void writeLabel(DataOutput out, int v) throws IOException { assert v >= 0: "v=" + v; if (inputType == INPUT_TYPE.BYTE1) { assert v <= 255: "v=" + v; out.writeByte((byte) v); } else if (inputType == INPUT_TYPE.BYTE2) { assert v <= 65535: "v=" + v; out.writeShort((short) v); } else { out.writeVInt(v); } } /** Reads one BYTE1/2/4 label from the provided {@link DataInput}. */ public int readLabel(DataInput in) throws IOException { final int v; if (inputType == INPUT_TYPE.BYTE1) { // Unsigned byte: v = in.readByte()&0xFF; } else if (inputType == INPUT_TYPE.BYTE2) { // Unsigned short: v = in.readShort()&0xFFFF; } else { v = in.readVInt(); } return v; } /** returns true if the node at this address has any * outgoing arcs */ public static boolean targetHasArcs(Arc arc) { return arc.target > 0; } // serializes new node by appending its bytes to the end // of the current byte[] long addNode(Builder builder, Builder.UnCompiledNode nodeIn) throws IOException { T NO_OUTPUT = outputs.getNoOutput(); //System.out.println("FST.addNode pos=" + bytes.getPosition() + " numArcs=" + nodeIn.numArcs); if (nodeIn.numArcs == 0) { if (nodeIn.isFinal) { return FINAL_END_NODE; } else { return NON_FINAL_END_NODE; } } final long startAddress = builder.bytes.getPosition(); //System.out.println(" startAddr=" + startAddress); final boolean doFixedArray = shouldExpand(builder, nodeIn); if (doFixedArray) { //System.out.println(" fixedArray"); if (builder.reusedBytesPerArc.length < nodeIn.numArcs) { builder.reusedBytesPerArc = new int[ArrayUtil.oversize(nodeIn.numArcs, 1)]; } } builder.arcCount += nodeIn.numArcs; final int lastArc = nodeIn.numArcs-1; long lastArcStart = builder.bytes.getPosition(); int maxBytesPerArc = 0; for(int arcIdx=0;arcIdx arc = nodeIn.arcs[arcIdx]; final Builder.CompiledNode target = (Builder.CompiledNode) arc.target; int flags = 0; //System.out.println(" arc " + arcIdx + " label=" + arc.label + " -> target=" + target.node); if (arcIdx == lastArc) { flags += BIT_LAST_ARC; } if (builder.lastFrozenNode == target.node && !doFixedArray) { // TODO: for better perf (but more RAM used) we // could avoid this except when arc is "near" the // last arc: flags += BIT_TARGET_NEXT; } if (arc.isFinal) { flags += BIT_FINAL_ARC; if (arc.nextFinalOutput != NO_OUTPUT) { flags += BIT_ARC_HAS_FINAL_OUTPUT; } } else { assert arc.nextFinalOutput == NO_OUTPUT; } boolean targetHasArcs = target.node > 0; if (!targetHasArcs) { flags += BIT_STOP_NODE; } else if (inCounts != null) { inCounts.set((int) target.node, inCounts.get((int) target.node) + 1); } if (arc.output != NO_OUTPUT) { flags += BIT_ARC_HAS_OUTPUT; } builder.bytes.writeByte((byte) flags); writeLabel(builder.bytes, arc.label); // System.out.println(" write arc: label=" + (char) arc.label + " flags=" + flags + " target=" + target.node + " pos=" + bytes.getPosition() + " output=" + outputs.outputToString(arc.output)); if (arc.output != NO_OUTPUT) { outputs.write(arc.output, builder.bytes); //System.out.println(" write output"); } if (arc.nextFinalOutput != NO_OUTPUT) { //System.out.println(" write final output"); outputs.writeFinalOutput(arc.nextFinalOutput, builder.bytes); } if (targetHasArcs && (flags & BIT_TARGET_NEXT) == 0) { assert target.node > 0; //System.out.println(" write target"); builder.bytes.writeVLong(target.node); } // just write the arcs "like normal" on first pass, // but record how many bytes each one took, and max // byte size: if (doFixedArray) { builder.reusedBytesPerArc[arcIdx] = (int) (builder.bytes.getPosition() - lastArcStart); lastArcStart = builder.bytes.getPosition(); maxBytesPerArc = Math.max(maxBytesPerArc, builder.reusedBytesPerArc[arcIdx]); //System.out.println(" bytes=" + builder.reusedBytesPerArc[arcIdx]); } } // TODO: try to avoid wasteful cases: disable doFixedArray in that case /* * * LUCENE-4682: what is a fair heuristic here? * It could involve some of these: * 1. how "busy" the node is: nodeIn.inputCount relative to frontier[0].inputCount? * 2. how much binSearch saves over scan: nodeIn.numArcs * 3. waste: numBytes vs numBytesExpanded * * the one below just looks at #3 if (doFixedArray) { // rough heuristic: make this 1.25 "waste factor" a parameter to the phd ctor???? int numBytes = lastArcStart - startAddress; int numBytesExpanded = maxBytesPerArc * nodeIn.numArcs; if (numBytesExpanded > numBytes*1.25) { doFixedArray = false; } } */ if (doFixedArray) { final int MAX_HEADER_SIZE = 11; // header(byte) + numArcs(vint) + numBytes(vint) assert maxBytesPerArc > 0; // 2nd pass just "expands" all arcs to take up a fixed // byte size //System.out.println("write int @pos=" + (fixedArrayStart-4) + " numArcs=" + nodeIn.numArcs); // create the header // TODO: clean this up: or just rewind+reuse and deal with it byte header[] = new byte[MAX_HEADER_SIZE]; ByteArrayDataOutput bad = new ByteArrayDataOutput(header); // write a "false" first arc: bad.writeByte(ARCS_AS_FIXED_ARRAY); bad.writeVInt(nodeIn.numArcs); bad.writeVInt(maxBytesPerArc); int headerLen = bad.getPosition(); final long fixedArrayStart = startAddress + headerLen; // expand the arcs in place, backwards long srcPos = builder.bytes.getPosition(); long destPos = fixedArrayStart + nodeIn.numArcs*maxBytesPerArc; assert destPos >= srcPos; if (destPos > srcPos) { builder.bytes.skipBytes((int) (destPos - srcPos)); for(int arcIdx=nodeIn.numArcs-1;arcIdx>=0;arcIdx--) { destPos -= maxBytesPerArc; srcPos -= builder.reusedBytesPerArc[arcIdx]; //System.out.println(" repack arcIdx=" + arcIdx + " srcPos=" + srcPos + " destPos=" + destPos); if (srcPos != destPos) { //System.out.println(" copy len=" + builder.reusedBytesPerArc[arcIdx]); assert destPos > srcPos: "destPos=" + destPos + " srcPos=" + srcPos + " arcIdx=" + arcIdx + " maxBytesPerArc=" + maxBytesPerArc + " reusedBytesPerArc[arcIdx]=" + builder.reusedBytesPerArc[arcIdx] + " nodeIn.numArcs=" + nodeIn.numArcs; builder.bytes.copyBytes(srcPos, destPos, builder.reusedBytesPerArc[arcIdx]); } } } // now write the header builder.bytes.writeBytes(startAddress, header, 0, headerLen); } final long thisNodeAddress = builder.bytes.getPosition()-1; builder.bytes.reverse(startAddress, thisNodeAddress); // PackedInts uses int as the index, so we cannot handle // > 2.1B nodes when packing: if (nodeAddress != null && builder.nodeCount == Integer.MAX_VALUE) { throw new IllegalStateException("cannot create a packed FST with more than 2.1 billion nodes"); } builder.nodeCount++; final long node; if (nodeAddress != null) { // Nodes are addressed by 1+ord: if ((int) builder.nodeCount == nodeAddress.size()) { nodeAddress = nodeAddress.resize(ArrayUtil.oversize(nodeAddress.size() + 1, nodeAddress.getBitsPerValue())); inCounts = inCounts.resize(ArrayUtil.oversize(inCounts.size() + 1, inCounts.getBitsPerValue())); } nodeAddress.set((int) builder.nodeCount, thisNodeAddress); // System.out.println(" write nodeAddress[" + nodeCount + "] = " + endAddress); node = builder.nodeCount; } else { node = thisNodeAddress; } //System.out.println(" ret node=" + node + " address=" + thisNodeAddress + " nodeAddress=" + nodeAddress); return node; } /** Fills virtual 'start' arc, ie, an empty incoming arc to * the FST's start node */ public Arc getFirstArc(Arc arc) { T NO_OUTPUT = outputs.getNoOutput(); if (emptyOutput != null) { arc.flags = BIT_FINAL_ARC | BIT_LAST_ARC; arc.nextFinalOutput = emptyOutput; if (emptyOutput != NO_OUTPUT) { arc.flags |= BIT_ARC_HAS_FINAL_OUTPUT; } } else { arc.flags = BIT_LAST_ARC; arc.nextFinalOutput = NO_OUTPUT; } arc.output = NO_OUTPUT; // If there are no nodes, ie, the FST only accepts the // empty string, then startNode is 0 arc.target = startNode; return arc; } /** Follows the follow arc and reads the last * arc of its target; this changes the provided * arc (2nd arg) in-place and returns it. * * @return Returns the second argument * (arc). */ public Arc readLastTargetArc(Arc follow, Arc arc, BytesReader in) throws IOException { //System.out.println("readLast"); if (!targetHasArcs(follow)) { //System.out.println(" end node"); assert follow.isFinal(); arc.label = END_LABEL; arc.target = FINAL_END_NODE; arc.output = follow.nextFinalOutput; arc.flags = BIT_LAST_ARC; return arc; } else { in.setPosition(getNodeAddress(follow.target)); arc.node = follow.target; final byte b = in.readByte(); if (b == ARCS_AS_FIXED_ARRAY) { // array: jump straight to end arc.numArcs = in.readVInt(); if (packed || version >= VERSION_VINT_TARGET) { arc.bytesPerArc = in.readVInt(); } else { arc.bytesPerArc = in.readInt(); } //System.out.println(" array numArcs=" + arc.numArcs + " bpa=" + arc.bytesPerArc); arc.posArcsStart = in.getPosition(); arc.arcIdx = arc.numArcs - 2; } else { arc.flags = b; // non-array: linear scan arc.bytesPerArc = 0; //System.out.println(" scan"); while(!arc.isLast()) { // skip this arc: readLabel(in); if (arc.flag(BIT_ARC_HAS_OUTPUT)) { outputs.skipOutput(in); } if (arc.flag(BIT_ARC_HAS_FINAL_OUTPUT)) { outputs.skipFinalOutput(in); } if (arc.flag(BIT_STOP_NODE)) { } else if (arc.flag(BIT_TARGET_NEXT)) { } else if (packed) { in.readVLong(); } else { readUnpackedNodeTarget(in); } arc.flags = in.readByte(); } // Undo the byte flags we read: in.skipBytes(-1); arc.nextArc = in.getPosition(); } readNextRealArc(arc, in); assert arc.isLast(); return arc; } } private long readUnpackedNodeTarget(BytesReader in) throws IOException { long target; if (version < VERSION_VINT_TARGET) { target = in.readInt(); } else { target = in.readVLong(); } return target; } /** * Follow the follow arc and read the first arc of its target; * this changes the provided arc (2nd arg) in-place and returns * it. * * @return Returns the second argument (arc). */ public Arc readFirstTargetArc(Arc follow, Arc arc, BytesReader in) throws IOException { //int pos = address; //System.out.println(" readFirstTarget follow.target=" + follow.target + " isFinal=" + follow.isFinal()); if (follow.isFinal()) { // Insert "fake" final first arc: arc.label = END_LABEL; arc.output = follow.nextFinalOutput; arc.flags = BIT_FINAL_ARC; if (follow.target <= 0) { arc.flags |= BIT_LAST_ARC; } else { arc.node = follow.target; // NOTE: nextArc is a node (not an address!) in this case: arc.nextArc = follow.target; } arc.target = FINAL_END_NODE; //System.out.println(" insert isFinal; nextArc=" + follow.target + " isLast=" + arc.isLast() + " output=" + outputs.outputToString(arc.output)); return arc; } else { return readFirstRealTargetArc(follow.target, arc, in); } } public Arc readFirstRealTargetArc(long node, Arc arc, final BytesReader in) throws IOException { final long address = getNodeAddress(node); in.setPosition(address); //System.out.println(" readFirstRealTargtArc address=" //+ address); //System.out.println(" flags=" + arc.flags); arc.node = node; if (in.readByte() == ARCS_AS_FIXED_ARRAY) { //System.out.println(" fixedArray"); // this is first arc in a fixed-array arc.numArcs = in.readVInt(); if (packed || version >= VERSION_VINT_TARGET) { arc.bytesPerArc = in.readVInt(); } else { arc.bytesPerArc = in.readInt(); } arc.arcIdx = -1; arc.nextArc = arc.posArcsStart = in.getPosition(); //System.out.println(" bytesPer=" + arc.bytesPerArc + " numArcs=" + arc.numArcs + " arcsStart=" + pos); } else { //arc.flags = b; arc.nextArc = address; arc.bytesPerArc = 0; } return readNextRealArc(arc, in); } /** * Checks if arc's target state is in expanded (or vector) format. * * @return Returns true if arc points to a state in an * expanded array format. */ boolean isExpandedTarget(Arc follow, BytesReader in) throws IOException { if (!targetHasArcs(follow)) { return false; } else { in.setPosition(getNodeAddress(follow.target)); return in.readByte() == ARCS_AS_FIXED_ARRAY; } } /** In-place read; returns the arc. */ public Arc readNextArc(Arc arc, BytesReader in) throws IOException { if (arc.label == END_LABEL) { // This was a fake inserted "final" arc if (arc.nextArc <= 0) { throw new IllegalArgumentException("cannot readNextArc when arc.isLast()=true"); } return readFirstRealTargetArc(arc.nextArc, arc, in); } else { return readNextRealArc(arc, in); } } /** Peeks at next arc's label; does not alter arc. Do * not call this if arc.isLast()! */ public int readNextArcLabel(Arc arc, BytesReader in) throws IOException { assert !arc.isLast(); if (arc.label == END_LABEL) { //System.out.println(" nextArc fake " + //arc.nextArc); long pos = getNodeAddress(arc.nextArc); in.setPosition(pos); final byte b = in.readByte(); if (b == ARCS_AS_FIXED_ARRAY) { //System.out.println(" nextArc fixed array"); in.readVInt(); // Skip bytesPerArc: if (packed || version >= VERSION_VINT_TARGET) { in.readVInt(); } else { in.readInt(); } } else { in.setPosition(pos); } } else { if (arc.bytesPerArc != 0) { //System.out.println(" nextArc real array"); // arcs are at fixed entries in.setPosition(arc.posArcsStart); in.skipBytes((1+arc.arcIdx)*arc.bytesPerArc); } else { // arcs are packed //System.out.println(" nextArc real packed"); in.setPosition(arc.nextArc); } } // skip flags in.readByte(); return readLabel(in); } /** Never returns null, but you should never call this if * arc.isLast() is true. */ public Arc readNextRealArc(Arc arc, final BytesReader in) throws IOException { // TODO: can't assert this because we call from readFirstArc // assert !flag(arc.flags, BIT_LAST_ARC); // this is a continuing arc in a fixed array if (arc.bytesPerArc != 0) { // arcs are at fixed entries arc.arcIdx++; assert arc.arcIdx < arc.numArcs; in.setPosition(arc.posArcsStart); in.skipBytes(arc.arcIdx*arc.bytesPerArc); } else { // arcs are packed in.setPosition(arc.nextArc); } arc.flags = in.readByte(); arc.label = readLabel(in); if (arc.flag(BIT_ARC_HAS_OUTPUT)) { arc.output = outputs.read(in); } else { arc.output = outputs.getNoOutput(); } if (arc.flag(BIT_ARC_HAS_FINAL_OUTPUT)) { arc.nextFinalOutput = outputs.readFinalOutput(in); } else { arc.nextFinalOutput = outputs.getNoOutput(); } if (arc.flag(BIT_STOP_NODE)) { if (arc.flag(BIT_FINAL_ARC)) { arc.target = FINAL_END_NODE; } else { arc.target = NON_FINAL_END_NODE; } arc.nextArc = in.getPosition(); } else if (arc.flag(BIT_TARGET_NEXT)) { arc.nextArc = in.getPosition(); // TODO: would be nice to make this lazy -- maybe // caller doesn't need the target and is scanning arcs... if (nodeAddress == null) { if (!arc.flag(BIT_LAST_ARC)) { if (arc.bytesPerArc == 0) { // must scan seekToNextNode(in); } else { in.setPosition(arc.posArcsStart); in.skipBytes(arc.bytesPerArc * arc.numArcs); } } arc.target = in.getPosition(); } else { arc.target = arc.node - 1; assert arc.target > 0; } } else { if (packed) { final long pos = in.getPosition(); final long code = in.readVLong(); if (arc.flag(BIT_TARGET_DELTA)) { // Address is delta-coded from current address: arc.target = pos + code; //System.out.println(" delta pos=" + pos + " delta=" + code + " target=" + arc.target); } else if (code < nodeRefToAddress.size()) { // Deref arc.target = nodeRefToAddress.get((int) code); //System.out.println(" deref code=" + code + " target=" + arc.target); } else { // Absolute arc.target = code; //System.out.println(" abs code=" + code); } } else { arc.target = readUnpackedNodeTarget(in); } arc.nextArc = in.getPosition(); } return arc; } // LUCENE-5152: called only from asserts, to validate that the // non-cached arc lookup would produce the same result, to // catch callers that illegally modify shared structures with // the result (we shallow-clone the Arc itself, but e.g. a BytesRef // output is still shared): private boolean assertRootCachedArc(int label, Arc cachedArc) throws IOException { Arc arc = new Arc<>(); getFirstArc(arc); BytesReader in = getBytesReader(); Arc result = findTargetArc(label, arc, arc, in, false); if (result == null) { assert cachedArc == null; } else { assert cachedArc != null; assert cachedArc.arcIdx == result.arcIdx; assert cachedArc.bytesPerArc == result.bytesPerArc; assert cachedArc.flags == result.flags; assert cachedArc.label == result.label; assert cachedArc.nextArc == result.nextArc; assert cachedArc.nextFinalOutput.equals(result.nextFinalOutput); assert cachedArc.node == result.node; assert cachedArc.numArcs == result.numArcs; assert cachedArc.output.equals(result.output); assert cachedArc.posArcsStart == result.posArcsStart; assert cachedArc.target == result.target; } return true; } // TODO: could we somehow [partially] tableize arc lookups // like automaton? /** Finds an arc leaving the incoming arc, replacing the arc in place. * This returns null if the arc was not found, else the incoming arc. */ public Arc findTargetArc(int labelToMatch, Arc follow, Arc arc, BytesReader in) throws IOException { return findTargetArc(labelToMatch, follow, arc, in, true); } /** Finds an arc leaving the incoming arc, replacing the arc in place. * This returns null if the arc was not found, else the incoming arc. */ private Arc findTargetArc(int labelToMatch, Arc follow, Arc arc, BytesReader in, boolean useRootArcCache) throws IOException { if (labelToMatch == END_LABEL) { if (follow.isFinal()) { if (follow.target <= 0) { arc.flags = BIT_LAST_ARC; } else { arc.flags = 0; // NOTE: nextArc is a node (not an address!) in this case: arc.nextArc = follow.target; arc.node = follow.target; } arc.output = follow.nextFinalOutput; arc.label = END_LABEL; return arc; } else { return null; } } // Short-circuit if this arc is in the root arc cache: if (useRootArcCache && cachedRootArcs != null && follow.target == startNode && labelToMatch < cachedRootArcs.length) { final Arc result = cachedRootArcs[labelToMatch]; // LUCENE-5152: detect tricky cases where caller // modified previously returned cached root-arcs: assert assertRootCachedArc(labelToMatch, result); if (result == null) { return null; } else { arc.copyFrom(result); return arc; } } if (!targetHasArcs(follow)) { return null; } in.setPosition(getNodeAddress(follow.target)); arc.node = follow.target; // System.out.println("fta label=" + (char) labelToMatch); if (in.readByte() == ARCS_AS_FIXED_ARRAY) { // Arcs are full array; do binary search: arc.numArcs = in.readVInt(); if (packed || version >= VERSION_VINT_TARGET) { arc.bytesPerArc = in.readVInt(); } else { arc.bytesPerArc = in.readInt(); } arc.posArcsStart = in.getPosition(); int low = 0; int high = arc.numArcs-1; while (low <= high) { //System.out.println(" cycle"); int mid = (low + high) >>> 1; in.setPosition(arc.posArcsStart); in.skipBytes(arc.bytesPerArc*mid + 1); int midLabel = readLabel(in); final int cmp = midLabel - labelToMatch; if (cmp < 0) { low = mid + 1; } else if (cmp > 0) { high = mid - 1; } else { arc.arcIdx = mid-1; //System.out.println(" found!"); return readNextRealArc(arc, in); } } return null; } // Linear scan readFirstRealTargetArc(follow.target, arc, in); while(true) { //System.out.println(" non-bs cycle"); // TODO: we should fix this code to not have to create // object for the output of every arc we scan... only // for the matching arc, if found if (arc.label == labelToMatch) { //System.out.println(" found!"); return arc; } else if (arc.label > labelToMatch) { return null; } else if (arc.isLast()) { return null; } else { readNextRealArc(arc, in); } } } private void seekToNextNode(BytesReader in) throws IOException { while(true) { final int flags = in.readByte(); readLabel(in); if (flag(flags, BIT_ARC_HAS_OUTPUT)) { outputs.skipOutput(in); } if (flag(flags, BIT_ARC_HAS_FINAL_OUTPUT)) { outputs.skipFinalOutput(in); } if (!flag(flags, BIT_STOP_NODE) && !flag(flags, BIT_TARGET_NEXT)) { if (packed) { in.readVLong(); } else { readUnpackedNodeTarget(in); } } if (flag(flags, BIT_LAST_ARC)) { return; } } } /** * Nodes will be expanded if their depth (distance from the root node) is * <= this value and their number of arcs is >= * {@link #FIXED_ARRAY_NUM_ARCS_SHALLOW}. * *

* Fixed array consumes more RAM but enables binary search on the arcs * (instead of a linear scan) on lookup by arc label. * * @return true if node should be stored in an * expanded (array) form. * * @see #FIXED_ARRAY_NUM_ARCS_DEEP * @see Builder.UnCompiledNode#depth */ private boolean shouldExpand(Builder builder, Builder.UnCompiledNode node) { return builder.allowArrayArcs && ((node.depth <= FIXED_ARRAY_SHALLOW_DISTANCE && node.numArcs >= FIXED_ARRAY_NUM_ARCS_SHALLOW) || node.numArcs >= FIXED_ARRAY_NUM_ARCS_DEEP); } /** Returns a {@link BytesReader} for this FST, positioned at * position 0. */ public BytesReader getBytesReader() { if (packed) { if (bytesArray != null) { return new ForwardBytesReader(bytesArray); } else { return bytes.getForwardReader(); } } else { if (bytesArray != null) { return new ReverseBytesReader(bytesArray); } else { return bytes.getReverseReader(); } } } /** Reads bytes stored in an FST. */ public static abstract class BytesReader extends DataInput { /** Get current read position. */ public abstract long getPosition(); /** Set current read position. */ public abstract void setPosition(long pos); /** Returns true if this reader uses reversed bytes * under-the-hood. */ public abstract boolean reversed(); } /* public void countSingleChains() throws IOException { // TODO: must assert this FST was built with // "willRewrite" final List> queue = new ArrayList<>(); // TODO: use bitset to not revisit nodes already // visited FixedBitSet seen = new FixedBitSet(1+nodeCount); int saved = 0; queue.add(new ArcAndState(getFirstArc(new Arc()), new IntsRef())); Arc scratchArc = new Arc<>(); while(queue.size() > 0) { //System.out.println("cycle size=" + queue.size()); //for(ArcAndState ent : queue) { // System.out.println(" " + Util.toBytesRef(ent.chain, new BytesRef())); // } final ArcAndState arcAndState = queue.get(queue.size()-1); seen.set(arcAndState.arc.node); final BytesRef br = Util.toBytesRef(arcAndState.chain, new BytesRef()); if (br.length > 0 && br.bytes[br.length-1] == -1) { br.length--; } //System.out.println(" top node=" + arcAndState.arc.target + " chain=" + br.utf8ToString()); if (targetHasArcs(arcAndState.arc) && !seen.get(arcAndState.arc.target)) { // push readFirstTargetArc(arcAndState.arc, scratchArc); //System.out.println(" push label=" + (char) scratchArc.label); //System.out.println(" tonode=" + scratchArc.target + " last?=" + scratchArc.isLast()); final IntsRef chain = IntsRef.deepCopyOf(arcAndState.chain); chain.grow(1+chain.length); // TODO //assert scratchArc.label != END_LABEL; chain.ints[chain.length] = scratchArc.label; chain.length++; if (scratchArc.isLast()) { if (scratchArc.target != -1 && inCounts[scratchArc.target] == 1) { //System.out.println(" append"); } else { if (arcAndState.chain.length > 1) { saved += chain.length-2; try { System.out.println("chain: " + Util.toBytesRef(chain, new BytesRef()).utf8ToString()); } catch (AssertionError ae) { System.out.println("chain: " + Util.toBytesRef(chain, new BytesRef())); } } chain.length = 0; } } else { //System.out.println(" reset"); if (arcAndState.chain.length > 1) { saved += arcAndState.chain.length-2; try { System.out.println("chain: " + Util.toBytesRef(arcAndState.chain, new BytesRef()).utf8ToString()); } catch (AssertionError ae) { System.out.println("chain: " + Util.toBytesRef(arcAndState.chain, new BytesRef())); } } if (scratchArc.target != -1 && inCounts[scratchArc.target] != 1) { chain.length = 0; } else { chain.ints[0] = scratchArc.label; chain.length = 1; } } // TODO: instead of new Arc() we can re-use from // a by-depth array queue.add(new ArcAndState(new Arc().copyFrom(scratchArc), chain)); } else if (!arcAndState.arc.isLast()) { // next readNextArc(arcAndState.arc); //System.out.println(" next label=" + (char) arcAndState.arc.label + " len=" + arcAndState.chain.length); if (arcAndState.chain.length != 0) { arcAndState.chain.ints[arcAndState.chain.length-1] = arcAndState.arc.label; } } else { if (arcAndState.chain.length > 1) { saved += arcAndState.chain.length-2; System.out.println("chain: " + Util.toBytesRef(arcAndState.chain, new BytesRef()).utf8ToString()); } // pop //System.out.println(" pop"); queue.remove(queue.size()-1); while(queue.size() > 0 && queue.get(queue.size()-1).arc.isLast()) { queue.remove(queue.size()-1); } if (queue.size() > 0) { final ArcAndState arcAndState2 = queue.get(queue.size()-1); readNextArc(arcAndState2.arc); //System.out.println(" read next=" + (char) arcAndState2.arc.label + " queue=" + queue.size()); assert arcAndState2.arc.label != END_LABEL; if (arcAndState2.chain.length != 0) { arcAndState2.chain.ints[arcAndState2.chain.length-1] = arcAndState2.arc.label; } } } } System.out.println("TOT saved " + saved); } */ // Creates a packed FST private FST(INPUT_TYPE inputType, Outputs outputs, int bytesPageBits) { version = VERSION_CURRENT; packed = true; this.inputType = inputType; bytesArray = null; bytes = new BytesStore(bytesPageBits); this.outputs = outputs; } /** Expert: creates an FST by packing this one. This * process requires substantial additional RAM (currently * up to ~8 bytes per node depending on * acceptableOverheadRatio), but then should * produce a smaller FST. * *

The implementation of this method uses ideas from * Smaller Representation of Finite State Automata, * which describes techniques to reduce the size of a FST. * However, this is not a strict implementation of the * algorithms described in this paper. */ FST pack(Builder builder, int minInCountDeref, int maxDerefNodes, float acceptableOverheadRatio) throws IOException { // NOTE: maxDerefNodes is intentionally int: we cannot // support > 2.1B deref nodes // TODO: other things to try // - renumber the nodes to get more next / better locality? // - allow multiple input labels on an arc, so // singular chain of inputs can take one arc (on // wikipedia terms this could save another ~6%) // - in the ord case, the output '1' is presumably // very common (after NO_OUTPUT)... maybe use a bit // for it..? // - use spare bits in flags.... for top few labels / // outputs / targets if (nodeAddress == null) { throw new IllegalArgumentException("this FST was not built with willPackFST=true"); } T NO_OUTPUT = outputs.getNoOutput(); Arc arc = new Arc<>(); final BytesReader r = getBytesReader(); final int topN = Math.min(maxDerefNodes, inCounts.size()); // Find top nodes with highest number of incoming arcs: NodeQueue q = new NodeQueue(topN); // TODO: we could use more RAM efficient selection algo here... NodeAndInCount bottom = null; for(int node=0; node= minInCountDeref) { if (bottom == null) { q.add(new NodeAndInCount(node, (int) inCounts.get(node))); if (q.size() == topN) { bottom = q.top(); } } else if (inCounts.get(node) > bottom.count) { q.insertWithOverflow(new NodeAndInCount(node, (int) inCounts.get(node))); } } } // Free up RAM: inCounts = null; final Map topNodeMap = new HashMap<>(); for(int downTo=q.size()-1;downTo>=0;downTo--) { NodeAndInCount n = q.pop(); topNodeMap.put(n.node, downTo); //System.out.println("map node=" + n.node + " inCount=" + n.count + " to newID=" + downTo); } // +1 because node ords start at 1 (0 is reserved as stop node): final GrowableWriter newNodeAddress = new GrowableWriter( PackedInts.bitsRequired(builder.bytes.getPosition()), (int) (1 + builder.nodeCount), acceptableOverheadRatio); // Fill initial coarse guess: for(int node=1;node<=builder.nodeCount;node++) { newNodeAddress.set(node, 1 + builder.bytes.getPosition() - nodeAddress.get(node)); } int absCount; int deltaCount; int topCount; int nextCount; FST fst; // Iterate until we converge: while(true) { //System.out.println("\nITER"); boolean changed = false; // for assert: boolean negDelta = false; fst = new FST<>(inputType, outputs, builder.bytes.getBlockBits()); final BytesStore writer = fst.bytes; // Skip 0 byte since 0 is reserved target: writer.writeByte((byte) 0); absCount = deltaCount = topCount = nextCount = 0; int changedCount = 0; long addressError = 0; //int totWasted = 0; // Since we re-reverse the bytes, we now write the // nodes backwards, so that BIT_TARGET_NEXT is // unchanged: for(int node=(int) builder.nodeCount;node>=1;node--) { final long address = writer.getPosition(); //System.out.println(" node: " + node + " address=" + address); if (address != newNodeAddress.get(node)) { addressError = address - newNodeAddress.get(node); //System.out.println(" change: " + (address - newNodeAddress[node])); changed = true; newNodeAddress.set(node, address); changedCount++; } int nodeArcCount = 0; int bytesPerArc = 0; boolean retry = false; // for assert: boolean anyNegDelta = false; // Retry loop: possibly iterate more than once, if // this is an array'd node and bytesPerArc changes: writeNode: while(true) { // retry writing this node //System.out.println(" cycle: retry"); readFirstRealTargetArc(node, arc, r); final boolean useArcArray = arc.bytesPerArc != 0; if (useArcArray) { // Write false first arc: if (bytesPerArc == 0) { bytesPerArc = arc.bytesPerArc; } writer.writeByte(ARCS_AS_FIXED_ARRAY); writer.writeVInt(arc.numArcs); writer.writeVInt(bytesPerArc); //System.out.println("node " + node + ": " + arc.numArcs + " arcs"); } int maxBytesPerArc = 0; //int wasted = 0; while(true) { // iterate over all arcs for this node //System.out.println(" cycle next arc"); final long arcStartPos = writer.getPosition(); nodeArcCount++; byte flags = 0; if (arc.isLast()) { flags += BIT_LAST_ARC; } /* if (!useArcArray && nodeUpto < nodes.length-1 && arc.target == nodes[nodeUpto+1]) { flags += BIT_TARGET_NEXT; } */ if (!useArcArray && node != 1 && arc.target == node-1) { flags += BIT_TARGET_NEXT; if (!retry) { nextCount++; } } if (arc.isFinal()) { flags += BIT_FINAL_ARC; if (arc.nextFinalOutput != NO_OUTPUT) { flags += BIT_ARC_HAS_FINAL_OUTPUT; } } else { assert arc.nextFinalOutput == NO_OUTPUT; } if (!targetHasArcs(arc)) { flags += BIT_STOP_NODE; } if (arc.output != NO_OUTPUT) { flags += BIT_ARC_HAS_OUTPUT; } final long absPtr; final boolean doWriteTarget = targetHasArcs(arc) && (flags & BIT_TARGET_NEXT) == 0; if (doWriteTarget) { final Integer ptr = topNodeMap.get(arc.target); if (ptr != null) { absPtr = ptr; } else { absPtr = topNodeMap.size() + newNodeAddress.get((int) arc.target) + addressError; } long delta = newNodeAddress.get((int) arc.target) + addressError - writer.getPosition() - 2; if (delta < 0) { //System.out.println("neg: " + delta); anyNegDelta = true; delta = 0; } if (delta < absPtr) { flags |= BIT_TARGET_DELTA; } } else { absPtr = 0; } assert flags != ARCS_AS_FIXED_ARRAY; writer.writeByte(flags); fst.writeLabel(writer, arc.label); if (arc.output != NO_OUTPUT) { outputs.write(arc.output, writer); } if (arc.nextFinalOutput != NO_OUTPUT) { outputs.writeFinalOutput(arc.nextFinalOutput, writer); } if (doWriteTarget) { long delta = newNodeAddress.get((int) arc.target) + addressError - writer.getPosition(); if (delta < 0) { anyNegDelta = true; //System.out.println("neg: " + delta); delta = 0; } if (flag(flags, BIT_TARGET_DELTA)) { //System.out.println(" delta"); writer.writeVLong(delta); if (!retry) { deltaCount++; } } else { /* if (ptr != null) { System.out.println(" deref"); } else { System.out.println(" abs"); } */ writer.writeVLong(absPtr); if (!retry) { if (absPtr >= topNodeMap.size()) { absCount++; } else { topCount++; } } } } if (useArcArray) { final int arcBytes = (int) (writer.getPosition() - arcStartPos); //System.out.println(" " + arcBytes + " bytes"); maxBytesPerArc = Math.max(maxBytesPerArc, arcBytes); // NOTE: this may in fact go "backwards", if // somehow (rarely, possibly never) we use // more bytesPerArc in this rewrite than the // incoming FST did... but in this case we // will retry (below) so it's OK to ovewrite // bytes: //wasted += bytesPerArc - arcBytes; writer.skipBytes((int) (arcStartPos + bytesPerArc - writer.getPosition())); } if (arc.isLast()) { break; } readNextRealArc(arc, r); } if (useArcArray) { if (maxBytesPerArc == bytesPerArc || (retry && maxBytesPerArc <= bytesPerArc)) { // converged //System.out.println(" bba=" + bytesPerArc + " wasted=" + wasted); //totWasted += wasted; break; } } else { break; } //System.out.println(" retry this node maxBytesPerArc=" + maxBytesPerArc + " vs " + bytesPerArc); // Retry: bytesPerArc = maxBytesPerArc; writer.truncate(address); nodeArcCount = 0; retry = true; anyNegDelta = false; } negDelta |= anyNegDelta; } if (!changed) { // We don't renumber the nodes (just reverse their // order) so nodes should only point forward to // other nodes because we only produce acyclic FSTs // w/ nodes only pointing "forwards": assert !negDelta; //System.out.println("TOT wasted=" + totWasted); // Converged! break; } } long maxAddress = 0; for (long key : topNodeMap.keySet()) { maxAddress = Math.max(maxAddress, newNodeAddress.get((int) key)); } PackedInts.Mutable nodeRefToAddressIn = PackedInts.getMutable(topNodeMap.size(), PackedInts.bitsRequired(maxAddress), acceptableOverheadRatio); for(Map.Entry ent : topNodeMap.entrySet()) { nodeRefToAddressIn.set(ent.getValue(), newNodeAddress.get(ent.getKey())); } fst.nodeRefToAddress = nodeRefToAddressIn; fst.startNode = newNodeAddress.get((int) startNode); //System.out.println("new startNode=" + fst.startNode + " old startNode=" + startNode); if (emptyOutput != null) { fst.setEmptyOutput(emptyOutput); } fst.bytes.finish(); fst.cacheRootArcs(); //final int size = fst.sizeInBytes(); //System.out.println("nextCount=" + nextCount + " topCount=" + topCount + " deltaCount=" + deltaCount + " absCount=" + absCount); return fst; } private static class NodeAndInCount implements Comparable { final int node; final int count; public NodeAndInCount(int node, int count) { this.node = node; this.count = count; } @Override public int compareTo(NodeAndInCount other) { if (count > other.count) { return 1; } else if (count < other.count) { return -1; } else { // Tie-break: smaller node compares as greater than return other.node - node; } } } private static class NodeQueue extends PriorityQueue { public NodeQueue(int topN) { super(topN, false); } @Override public boolean lessThan(NodeAndInCount a, NodeAndInCount b) { final int cmp = a.compareTo(b); assert cmp != 0; return cmp < 0; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy