All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.classification.FLD Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.classification;

import java.util.Arrays;
import smile.math.Math;
import smile.math.matrix.EigenValueDecomposition;
import smile.projection.Projection;

/**
 * Fisher's linear discriminant. Fisher defined the separation between two
 * distributions to be the ratio of the variance between the classes to
 * the variance within the classes, which is, in some sense, a measure
 * of the signal-to-noise ratio for the class labeling. FLD finds a linear
 * combination of features which maximizes the separation after the projection.
 * The resulting combination may be used for dimensionality reduction
 * before later classification.
 * 

* The terms Fisher's linear discriminant and LDA are often used * interchangeably, although FLD actually describes a slightly different * discriminant, which does not make some of the assumptions of LDA such * as normally distributed classes or equal class covariances. * When the assumptions of LDA are satisfied, FLD is equivalent to LDA. *

* FLD is also closely related to principal component analysis (PCA), which also * looks for linear combinations of variables which best explain the data. * As a supervised method, FLD explicitly attempts to model the * difference between the classes of data. On the other hand, PCA is a * unsupervised method and does not take into account any difference in class. *

* One complication in applying FLD (and LDA) to real data * occurs when the number of variables/features does not exceed * the number of samples. In this case, the covariance estimates do not have * full rank, and so cannot be inverted. This is known as small sample size * problem. * * @see LDA * @see smile.projection.PCA * * @author Haifeng Li */ public class FLD implements Classifier, Projection { /** * The dimensionality of data. */ private final int p; /** * The number of classes. */ private final int k; /** * Original common mean vector. */ private final double[] mean; /** * Original class mean vectors. */ private final double[][] mu; /** * Project matrix. */ private final double[][] scaling; /** * Projected common mean vector. */ private final double[] smean; /** * Projected class mean vectors. */ private final double[][] smu; /** * Trainer for Fisher's linear discriminant. */ public static class Trainer extends ClassifierTrainer { /** * The dimensionality of mapped space. */ private int L = -1; /** * A tolerance to decide if a covariance matrix is singular. The trainer * will reject variables whose variance is less than tol2. */ private double tol = 1E-4; /** * Constructor. The dimensionality of mapped space will be k - 1, * where k is the number of classes of data. The default tolerance * to covariance matrix singularity is 1E-4. */ public Trainer() { } /** * Sets the dimensionality of mapped space. * * @param L the dimensionality of mapped space. */ public Trainer setDimension(int L) { if (L < 1) { throw new IllegalArgumentException("Invalid mapping space dimension: " + L); } this.L = L; return this; } /** * Sets covariance matrix singular tolerance. * * @param tol a tolerance to decide if a covariance matrix is singular. * The trainer will reject variables whose variance is less than tol2. */ public Trainer setTolerance(double tol) { if (tol < 0.0) { throw new IllegalArgumentException("Invalid tol: " + tol); } this.tol = tol; return this; } @Override public FLD train(double[][] x, int[] y) { return new FLD(x, y, L, tol); } } /** * Constructor. Learn Fisher's linear discriminant. * @param x training instances. * @param y training labels in [0, k), where k is the number of classes. */ public FLD(double[][] x, int[] y) { this(x, y, -1); } /** * Constructor. Learn Fisher's linear discriminant. * @param x training instances. * @param y training labels in [0, k), where k is the number of classes. * @param L the dimensionality of mapped space. */ public FLD(double[][] x, int[] y, int L) { this(x, y, L, 1E-4); } /** * Constructor. Learn Fisher's linear discriminant. * @param x training instances. * @param y training labels in [0, k), where k is the number of classes. * @param L the dimensionality of mapped space. * @param tol a tolerance to decide if a covariance matrix is singular; it * will reject variables whose variance is less than tol2. */ public FLD(double[][] x, int[] y, int L, double tol) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("The sizes of X and Y don't match: %d != %d", x.length, y.length)); } // class label set. int[] labels = Math.unique(y); Arrays.sort(labels); for (int i = 0; i < labels.length; i++) { if (labels[i] < 0) { throw new IllegalArgumentException("Negative class label: " + labels[i]); } if (i > 0 && labels[i] - labels[i-1] > 1) { throw new IllegalArgumentException("Missing class: " + labels[i]+1); } } k = labels.length; if (k < 2) { throw new IllegalArgumentException("Only one class."); } if (tol < 0.0) { throw new IllegalArgumentException("Invalid tol: " + tol); } if (x.length <= k) { throw new IllegalArgumentException(String.format("Sample size is too small: %d <= %d", x.length, k)); } if (L >= k) { throw new IllegalArgumentException(String.format("The dimensionality of mapped space is too high: %d >= %d", L, k)); } if (L <= 0) { L = k - 1; } final int n = x.length; p = x[0].length; // The number of instances in each class. int[] ni = new int[k]; // Common mean vector. mean = Math.colMean(x); // Common covariance. double[][] T = new double[p][p]; // Class mean vectors. mu = new double[k][p]; for (int i = 0; i < n; i++) { int c = y[i]; ni[c]++; for (int j = 0; j < p; j++) { mu[c][j] += x[i][j]; } } for (int i = 0; i < k; i++) { for (int j = 0; j < p; j++) { mu[i][j] = mu[i][j] / ni[i] - mean[j]; } } for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { for (int l = 0; l <= j; l++) { T[j][l] += (x[i][j] - mean[j]) * (x[i][l] - mean[l]); } } } for (int j = 0; j < p; j++) { for (int l = 0; l <= j; l++) { T[j][l] /= n; T[l][j] = T[j][l]; } } // Between class scatter double[][] B = new double[p][p]; for (int i = 0; i < k; i++) { for (int j = 0; j < p; j++) { for (int l = 0; l <= j; l++) { B[j][l] += mu[i][j] * mu[i][l]; } } } for (int j = 0; j < p; j++) { for (int l = 0; l <= j; l++) { B[j][l] /= k; B[l][j] = B[j][l]; } } EigenValueDecomposition eigen = EigenValueDecomposition.decompose(T, true); tol = tol * tol; double[] s = eigen.getEigenValues(); for (int i = 0; i < s.length; i++) { if (s[i] < tol) { throw new IllegalArgumentException("The covariance matrix is close to singular."); } s[i] = 1.0 / s[i]; } double[][] U = eigen.getEigenVectors(); double[][] UB = Math.atbmm(U, B); for (int i = 0; i < k; i++) { for (int j = 0; j < p; j++) { UB[i][j] *= s[j]; } } Math.abmm(U, UB, B); eigen = EigenValueDecomposition.decompose(B, true); U = eigen.getEigenVectors(); scaling = new double[p][L]; for (int i = 0; i < p; i++) { System.arraycopy(U[i], 0, scaling[i], 0, L); } smean = new double[L]; Math.atx(scaling, mean, smean); smu = Math.abmm(mu, scaling); } @Override public int predict(double[] x) { if (x.length != p) { throw new IllegalArgumentException(String.format("Invalid input vector size: %d, expected: %d", x.length, p)); } double[] wx = project(x); int y = 0; double nearest = Double.POSITIVE_INFINITY; for (int i = 0; i < k; i++) { double d = Math.distance(wx, smu[i]); if (d < nearest) { nearest = d; y = i; } } return y; } /** * Predicts the class label of an instance and also calculate a posteriori * probabilities. Not supported. */ @Override public int predict(double[] x, double[] posteriori) { throw new UnsupportedOperationException("Not supported."); } @Override public double[] project(double[] x) { if (x.length != p) { throw new IllegalArgumentException(String.format("Invalid input vector size: %d, expected: %d", x.length, p)); } double[] y = new double[scaling[0].length]; Math.atx(scaling, x, y); Math.minus(y, smean); return y; } @Override public double[][] project(double[][] x) { double[][] y = new double[x.length][scaling[0].length]; for (int i = 0; i < x.length; i++) { if (x[i].length != p) { throw new IllegalArgumentException(String.format("Invalid input vector size: %d, expected: %d", x[i].length, p)); } Math.atx(scaling, x[i], y[i]); Math.minus(y[i], smean); } return y; } /** * Returns the projection matrix W. The dimension reduced data can be obtained * by y = W' * x. */ public double[][] getProjection() { return scaling; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy