smile.clustering.GMeans Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering;
import java.util.ArrayList;
import java.util.Arrays;
import smile.math.Math;
import smile.sort.QuickSort;
import smile.stat.distribution.GaussianDistribution;
/**
* G-Means clustering algorithm, an extended K-Means which tries to
* automatically determine the number of clusters by normality test.
* The G-means algorithm is based on a statistical test for the hypothesis
* that a subset of data follows a Gaussian distribution. G-means runs
* k-means with increasing k in a hierarchical fashion until the test accepts
* the hypothesis that the data assigned to each k-means center are Gaussian.
*
* References
*
* - G. Hamerly and C. Elkan. Learning the k in k-means. NIPS, 2003.
*
*
* @see KMeans
* @see XMeans
*
* @author Haifeng Li
*/
public class GMeans extends KMeans {
/**
* Constructor. Clustering data with the number of clusters being
* automatically determined by G-Means algorithm.
* @param data the input data of which each row is a sample.
* @param kmax the maximum number of clusters.
*/
public GMeans(double[][] data, int kmax) {
if (kmax < 2) {
throw new IllegalArgumentException("Invalid parameter kmax = " + kmax);
}
int n = data.length;
int d = data[0].length;
k = 1;
size = new int[k];
size[0] = n;
y = new int[n];
centroids = new double[k][d];
for (int i = 0; i < n; i++) {
for (int j = 0; j < d; j++) {
centroids[0][j] += data[i][j];
}
}
for (int j = 0; j < d; j++) {
centroids[0][j] /= n;
}
distortion = 0.0;
for (int i = 0; i < n; i++) {
distortion += Math.squaredDistance(data[i], centroids[0]);
}
System.out.format("G-Means distortion with %d clusters: %.5f\n", k, distortion);
BBDTree bbd = new BBDTree(data);
while (k < kmax) {
ArrayList centers = new ArrayList();
double[] score = new double[k];
KMeans[] kmeans = new KMeans[k];
for (int i = 0; i < k; i++) {
// don't split too small cluster. anyway likelihood estimation
// not accurate in this case.
if (size[i] < 25) {
System.out.format("Cluster %3d\ttoo small to split: %d samples\n", i, size[i]);
continue;
}
double[][] subset = new double[size[i]][];
for (int j = 0, l = 0; j < n; j++) {
if (y[j] == i) {
subset[l++] = data[j];
}
}
kmeans[i] = new KMeans(subset, 2, 100, 4);
double[] v = new double[d];
for (int j = 0; j < d; j++) {
v[j] = kmeans[i].centroids[0][j] - kmeans[i].centroids[1][j];
}
double vp = Math.dot(v, v);
double[] x = new double[size[i]];
for (int j = 0; j < x.length; j++) {
x[j] = Math.dot(subset[j], v) / vp;
}
// normalize to mean 0 and variance 1.
Math.normalize(x);
score[i] = AndersonDarling(x);
System.out.format("Cluster %3d\tAnderson-Darling adjusted test statistic: %3.4f\n", i, score[i]);
}
int[] index = QuickSort.sort(score);
for (int i = 0; i < k; i++) {
if (score[index[i]] <= 1.8692) {
centers.add(centroids[index[i]]);
}
}
int m = centers.size();
for (int i = k; --i >= 0;) {
if (score[i] > 1.8692) {
if (centers.size() + i - m + 1 < kmax) {
System.out.format("Split cluster %d...\n", index[i]);
centers.add(kmeans[index[i]].centroids[0]);
centers.add(kmeans[index[i]].centroids[1]);
} else {
centers.add(centroids[index[i]]);
}
}
}
// no more split.
if (centers.size() == k) {
break;
}
k = centers.size();
double[][] sums = new double[k][d];
size = new int[k];
centroids = new double[k][];
for (int i = 0; i < k; i++) {
centroids[i] = centers.get(i);
}
distortion = Double.MAX_VALUE;
for (int iter = 0; iter < 100; iter++) {
double newDistortion = bbd.clustering(centroids, sums, size, y);
for (int i = 0; i < k; i++) {
if (size[i] > 0) {
for (int j = 0; j < d; j++) {
centroids[i][j] = sums[i][j] / size[i];
}
}
}
if (distortion <= newDistortion) {
break;
} else {
distortion = newDistortion;
}
}
System.out.format("G-Means distortion with %d clusters: %.5f\n", k, distortion);
}
}
/**
* Calculates the Anderson-Darling statistic for one-dimensional normality test.
*
* @param x the samples to test if drawn from a Gaussian distribution.
*/
private static double AndersonDarling(double[] x) {
int n = x.length;
Arrays.sort(x);
for (int i = 0; i < n; i++) {
x[i] = GaussianDistribution.getInstance().cdf(x[i]);
// in case overflow when taking log later.
if (x[i] == 0) x[i] = 0.0000001;
if (x[i] == 1) x[i] = 0.9999999;
}
double A = 0.0;
for (int i = 0; i < n; i++) {
A -= (2*i+1) * (Math.log(x[i]) + Math.log(1-x[n-i-1]));
}
A = A / n - n;
A *= (1 + 4.0/n - 25.0/(n*n));
return A;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(String.format("G-Means distortion: %.5f\n", distortion));
sb.append(String.format("Clusters of %d data points of dimension %d:\n", y.length, centroids[0].length));
for (int i = 0; i < k; i++) {
int r = (int) Math.round(1000.0 * size[i] / y.length);
sb.append(String.format("%3d\t%5d (%2d.%1d%%)\n", i, size[i], r / 10, r % 10));
}
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy