smile.imputation.AverageImputation Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.imputation;
/**
* Impute missing values with the average of other attributes in the instance.
* Assume the attributes of the dataset are of same kind, e.g. microarray gene
* expression data, the missing values can be estimated as the average of
* non-missing attributes in the same instance. Note that this is not the
* average of same attribute across different instances.
*
* @author Haifeng Li
*/
public class AverageImputation implements MissingValueImputation {
/**
* Constructor.
*/
public AverageImputation() {
}
@Override
public void impute(double[][] data) throws MissingValueImputationException {
for (int i = 0; i < data.length; i++) {
int n = 0;
double sum = 0.0;
for (double x : data[i]) {
if (!Double.isNaN(x)) {
n++;
sum += x;
}
}
if (n == 0) {
throw new MissingValueImputationException("The whole row " + i + " is missing");
}
if (n < data[i].length) {
double avg = sum / n;
for (int j = 0; j < data[i].length; j++) {
if (Double.isNaN(data[i][j])) {
data[i][j] = avg;
}
}
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy