smile.math.distance.DynamicTimeWarping Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.distance;
/**
* Dynamic time warping is an algorithm for measuring similarity between two
* sequences which may vary in time or speed. DTW has been applied to video,
* audio, and graphics - indeed, any data which can be turned into a linear
* representation can be analyzed with DTW. A well known application has been
* automatic speech recognition, to cope with different speaking speeds.
*
* In general, DTW is a method that allows a computer to find an optimal
* match between two given sequences (e.g. time series) with certain
* restrictions. The sequences are "warped" non-linearly in the time dimension
* to determine a measure of their similarity independent of certain non-linear
* variations in the time dimension. This sequence alignment method is often
* used in the context of hidden Markov models.
*
* One example of the restrictions imposed on the matching of the sequences
* is on the monotonicity of the mapping in the time dimension. Continuity
* is less important in DTW than in other pattern matching algorithms;
* DTW is an algorithm particularly suited to matching sequences with
* missing information, provided there are long enough segments for matching
* to occur.
*
* The optimization process is performed using dynamic programming, hence the name.
*
* The extension of the problem for two-dimensional "series" like images
* (planar warping) is NP-complete, while the problem for one-dimensional
* signals like time series can be solved in polynomial time.
*
* @author Haifeng Li
*/
public class DynamicTimeWarping implements Distance {
private Distance distance;
private double width = 1;
/**
* Constructor. Dynamic time warping without path constraints.
*/
public DynamicTimeWarping(Distance distance) {
this.distance = distance;
}
/**
* Dynamic time warping with Sakoe-Chiba band, which primarily to prevent
* unreasonable warping and also improve computational cost.
* @param radius the window width of Sakoe-Chiba band in terms of percentage of sequence length.
*/
public DynamicTimeWarping(Distance distance, double radius) {
if (radius < 0 || radius > 1)
throw new IllegalArgumentException("radius = " + radius);
this.distance = distance;
this.width = radius;
}
@Override
public String toString() {
return "Dynamic Time Warping";
}
@Override
public double d(T[] x1, T[] x2) {
int n1 = x1.length;
int n2 = x2.length;
int radius = (int) Math.round(width * Math.max(n1, n2));
double[][] table = new double[2][n2 + 1];
table[0][0] = 0;
for (int i = 1; i <= n2; i++) {
table[0][i] = Double.POSITIVE_INFINITY;
}
for (int i = 1; i <= n1; i++) {
int start = 1;
int end = n2;
if (radius > 0) {
start = Math.max(1, i - radius);
end = i + radius;
if (end < n2)
table[1][end+1] = Double.POSITIVE_INFINITY;
else
end = n2;
}
table[1][start - 1] = Double.POSITIVE_INFINITY;
for (int j = start; j <= end; j++) {
double cost = distance.d(x1[i-1], x2[j-1]);
double min = table[0][j - 1];
if (min > table[0][j]) {
min = table[0][j];
}
if (min > table[1][j - 1]) {
min = table[1][j - 1];
}
table[1][j] = cost + min;
}
double[] swap = table[0];
table[0] = table[1];
table[1] = swap;
}
return table[0][n2];
}
/**
* Dynamic time warping without path constraints.
*/
public static double d(int[] x1, int[] x2) {
int n1 = x1.length;
int n2 = x2.length;
double[][] table = new double[2][n2 + 1];
table[0][0] = 0;
for (int i = 1; i <= n2; i++) {
table[0][i] = Double.POSITIVE_INFINITY;
}
for (int i = 1; i <= n1; i++) {
table[1][0] = Double.POSITIVE_INFINITY;
for (int j = 1; j <= n2; j++) {
double cost = Math.abs(x1[i-1] - x2[j-1]);
double min = table[0][j - 1];
if (min > table[0][j]) {
min = table[0][j];
}
if (min > table[1][j - 1]) {
min = table[1][j - 1];
}
table[1][j] = cost + min;
}
double[] swap = table[0];
table[0] = table[1];
table[1] = swap;
}
return table[0][n2];
}
/**
* Dynamic time warping with Sakoe-Chiba band, which primarily to prevent
* unreasonable warping and also improve computational cost.
* @param radius the window width of Sakoe-Chiba band.
*/
public static double d(int[] x1, int[] x2, int radius) {
int n1 = x1.length;
int n2 = x2.length;
double[][] table = new double[2][n2 + 1];
table[0][0] = 0;
for (int i = 1; i <= n2; i++) {
table[0][i] = Double.POSITIVE_INFINITY;
}
for (int i = 1; i <= n1; i++) {
int start = Math.max(1, i - radius);
int end = Math.min(n2, i + radius);
table[1][start-1] = Double.POSITIVE_INFINITY;
if (end < n2) table[1][end+1] = Double.POSITIVE_INFINITY;
for (int j = start; j <= end; j++) {
double cost = Math.abs(x1[i-1] - x2[j-1]);
double min = table[0][j - 1];
if (min > table[0][j]) {
min = table[0][j];
}
if (min > table[1][j - 1]) {
min = table[1][j - 1];
}
table[1][j] = cost + min;
}
double[] swap = table[0];
table[0] = table[1];
table[1] = swap;
}
return table[0][n2];
}
/**
* Dynamic time warping without path constraints.
*/
public static double d(float[] x1, float[] x2) {
int n1 = x1.length;
int n2 = x2.length;
double[][] table = new double[2][n2 + 1];
table[0][0] = 0;
for (int i = 1; i <= n2; i++) {
table[0][i] = Double.POSITIVE_INFINITY;
}
for (int i = 1; i <= n1; i++) {
table[1][0] = Double.POSITIVE_INFINITY;
for (int j = 1; j <= n2; j++) {
double cost = Math.abs(x1[i-1] - x2[j-1]);
double min = table[0][j - 1];
if (min > table[0][j]) {
min = table[0][j];
}
if (min > table[1][j - 1]) {
min = table[1][j - 1];
}
table[1][j] = cost + min;
}
double[] swap = table[0];
table[0] = table[1];
table[1] = swap;
}
return table[0][n2];
}
/**
* Dynamic time warping with Sakoe-Chiba band, which primarily to prevent
* unreasonable warping and also improve computational cost.
* @param radius the window width of Sakoe-Chiba band.
*/
public static double d(float[] x1, float[] x2, int radius) {
int n1 = x1.length;
int n2 = x2.length;
double[][] table = new double[2][n2 + 1];
table[0][0] = 0;
for (int i = 1; i <= n2; i++) {
table[0][i] = Double.POSITIVE_INFINITY;
}
for (int i = 1; i <= n1; i++) {
int start = Math.max(1, i - radius);
int end = Math.min(n2, i + radius);
table[1][start-1] = Double.POSITIVE_INFINITY;
if (end < n2) table[1][end+1] = Double.POSITIVE_INFINITY;
for (int j = start; j <= end; j++) {
double cost = Math.abs(x1[i-1] - x2[j-1]);
double min = table[0][j - 1];
if (min > table[0][j]) {
min = table[0][j];
}
if (min > table[1][j - 1]) {
min = table[1][j - 1];
}
table[1][j] = cost + min;
}
double[] swap = table[0];
table[0] = table[1];
table[1] = swap;
}
return table[0][n2];
}
/**
* Dynamic time warping without path constraints.
*/
public static double d(double[] x1, double[] x2) {
int n1 = x1.length;
int n2 = x2.length;
double[][] table = new double[2][n2 + 1];
table[0][0] = 0;
for (int i = 1; i <= n2; i++) {
table[0][i] = Double.POSITIVE_INFINITY;
}
for (int i = 1; i <= n1; i++) {
table[1][0] = Double.POSITIVE_INFINITY;
for (int j = 1; j <= n2; j++) {
double cost = Math.abs(x1[i-1] - x2[j-1]);
double min = table[0][j - 1];
if (min > table[0][j]) {
min = table[0][j];
}
if (min > table[1][j - 1]) {
min = table[1][j - 1];
}
table[1][j] = cost + min;
}
double[] swap = table[0];
table[0] = table[1];
table[1] = swap;
}
return table[0][n2];
}
/**
* Dynamic time warping with Sakoe-Chiba band, which primarily to prevent
* unreasonable warping and also improve computational cost.
* @param radius the window width of Sakoe-Chiba band.
*/
public static double d(double[] x1, double[] x2, int radius) {
int n1 = x1.length;
int n2 = x2.length;
double[][] table = new double[2][n2 + 1];
table[0][0] = 0;
for (int i = 1; i <= n2; i++) {
table[0][i] = Double.POSITIVE_INFINITY;
}
for (int i = 1; i <= n1; i++) {
int start = Math.max(1, i - radius);
int end = Math.min(n2, i + radius);
table[1][start-1] = Double.POSITIVE_INFINITY;
if (end < n2) table[1][end+1] = Double.POSITIVE_INFINITY;
for (int j = start; j <= end; j++) {
double cost = Math.abs(x1[i-1] - x2[j-1]);
double min = table[0][j - 1];
if (min > table[0][j]) {
min = table[0][j];
}
if (min > table[1][j - 1]) {
min = table[1][j - 1];
}
table[1][j] = cost + min;
}
double[] swap = table[0];
table[0] = table[1];
table[1] = swap;
}
return table[0][n2];
}
}