smile.math.distance.SparseMinkowskiDistance Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.distance;
import java.util.Iterator;
import smile.math.SparseArray;
/**
* Minkowski distance of order p or Lp-norm, is a generalization of
* Euclidean distance that is actually L2-norm. You may also provide
* a specified weight vector. For float or double arrays, missing values (i.e. NaN)
* are also handled. Also support sparse arrays of which zeros are excluded
* to save space.
*
* @author Haifeng Li
*/
public class SparseMinkowskiDistance implements Metric {
/**
* The order of Minkowski distance.
*/
private int p;
/**
* The weights used in weighted distance.
*/
private double[] weight = null;
/**
* Constructor.
*/
public SparseMinkowskiDistance(int p) {
if (p <= 0)
throw new IllegalArgumentException(String.format("The order p has to be larger than 0: p = d", p));
this.p = p;
}
/**
* Constructor.
*
* @param weight the weight vector.
*/
public SparseMinkowskiDistance(int p, double[] weight) {
if (p <= 0)
throw new IllegalArgumentException(String.format("The order p has to be larger than 0: p = d", p));
for (int i = 0; i < weight.length; i++) {
if (weight[i] < 0)
throw new IllegalArgumentException(String.format("Weight has to be nonnegative: %f", weight[i]));
}
this.p = p;
this.weight = weight;
}
@Override
public String toString() {
return String.format("Minkowski distance (p = %d)", p);
}
@Override
public double d(SparseArray x, SparseArray y) {
if (x.isEmpty())
throw new IllegalArgumentException("List x is empty.");
if (y.isEmpty())
throw new IllegalArgumentException("List y is empty.");
Iterator iterX = x.iterator();
Iterator iterY = y.iterator();
SparseArray.Entry a = iterX.hasNext() ? iterX.next() : null;
SparseArray.Entry b = iterY.hasNext() ? iterY.next() : null;
double dist = 0.0;
if (weight == null) {
while (a != null && b != null) {
if (a.i < b.i) {
double d = a.x;
dist += Math.pow(d, p);
a = iterX.hasNext() ? iterX.next() : null;
} else if (a.i > b.i) {
double d = b.x;
dist += Math.pow(d, p);
b = iterY.hasNext() ? iterY.next() : null;
} else {
double d = a.x - b.x;
dist += Math.pow(d, p);
a = iterX.hasNext() ? iterX.next() : null;
b = iterY.hasNext() ? iterY.next() : null;
}
}
while (a != null) {
double d = a.x;
dist += Math.pow(d, p);
a = iterX.hasNext() ? iterX.next() : null;
}
while (b != null) {
double d = b.x;
dist += Math.pow(d, p);
b = iterY.hasNext() ? iterY.next() : null;
}
} else {
while (a != null && b != null) {
if (a.i < b.i) {
double d = a.x;
dist += weight[a.i] * Math.pow(d, p);
a = iterX.hasNext() ? iterX.next() : null;
} else if (a.i > b.i) {
double d = b.x;
dist += weight[b.i] * Math.pow(d, p);
b = iterY.hasNext() ? iterY.next() : null;
} else {
double d = a.x - b.x;
dist += weight[a.i] * Math.pow(d, p);
a = iterX.hasNext() ? iterX.next() : null;
b = iterY.hasNext() ? iterY.next() : null;
}
}
while (a != null) {
double d = a.x;
dist += weight[a.i] * Math.pow(d, p);
a = iterX.hasNext() ? iterX.next() : null;
}
while (b != null) {
double d = b.x;
dist += weight[b.i] * Math.pow(d, p);
b = iterY.hasNext() ? iterY.next() : null;
}
}
return Math.pow(dist, 1.0/p);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy