All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.kernel.SparseGaussianKernel Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.math.kernel;

import smile.math.SparseArray;
import smile.math.Math;

/**
 * The Gaussian Mercer Kernel. k(u, v) = e-||u-v||2 / (2 * σ2),
 * where σ > 0 is the scale parameter of the kernel.
 * 

* The Gaussian kernel is a good choice for a great deal of applications, * although sometimes it is remarked as being over used. * @author Haifeng Li */ public class SparseGaussianKernel implements MercerKernel { /** * The width of the kernel. */ private double gamma; /** * Constructor. * @param sigma the smooth/width parameter of Gaussian kernel. */ public SparseGaussianKernel(double sigma) { if (sigma <= 0) throw new IllegalArgumentException("sigma is not positive."); this.gamma = 0.5 / (sigma * sigma); } @Override public String toString() { return String.format("Sparse Gaussian Kernel (\u02E0 = %.4f)", Math.sqrt(0.5/gamma)); } @Override public double k(SparseArray x, SparseArray y) { return Math.exp(-gamma * Math.squaredDistance(x, y)); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy