smile.math.matrix.BandMatrix Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.matrix;
import java.util.Arrays;
/**
* A band matrix is a sparse matrix, whose non-zero entries are confined to
* a diagonal band, comprising the main diagonal and zero or more diagonals
* on either side.
*
* In numerical analysis, matrices from finite element or finite difference
* problems are often banded. Such matrices can be viewed as descriptions
* of the coupling between the problem variables; the bandedness corresponds
* to the fact that variables are not coupled over arbitrarily large distances.
* Such matrices can be further divided - for instance, banded matrices exist
* where every element in the band is nonzero. These often arise when
* discretizing one-dimensional problems. Problems in higher dimensions also
* lead to banded matrices, in which case the band itself also tends to be sparse.
* For instance, a partial differential equation on a square domain (using
* central differences) will yield a matrix with a half-bandwidth equal to the
* square root of the matrix dimension, but inside the band only 5 diagonals are
* nonzero. Unfortunately, applying Gaussian elimination (or equivalently an
* LU decomposition) to such a matrix results in the band being filled in by
* many non-zero elements. As sparse matrices lend themselves to more efficient
* computation than dense matrices, there has been much research focused on
* finding ways to minimize the bandwidth (or directly minimize the fill in)
* by applying permutations to the matrix, or other such equivalence or
* similarity transformations.
*
* From a computational point of view, working with band matrices is always
* preferential to working with similarly dimensioned dense square matrices.
* A band matrix can be likened in complexity to a rectangular matrix whose
* row dimension is equal to the bandwidth of the band matrix. Thus the work
* involved in performing operations such as multiplication falls significantly,
* often leading to huge savings in terms of calculation time and complexity.
*
* Given a n-by-n band matrix with m1 rows below the diagonal and m2 rows above.
* The matrix is compactly stored in an array A[0,n-1][0,m1+m2]. The diagonal
* elements are in A[0,n-1][m1]. Subdiagonal elements are in A[j,n-1][0,m1-1]
* with j > 0 appropriate to the number of elements on each subdiagonal.
* Superdiagonal elements are in A[0,j][m1+1,m2+m2]
* with j < n-1 appropriate to the number of elements on each superdiagonal.
*
* @author Haifeng Li
*/
public class BandMatrix implements IMatrix {
/**
* Compact store of band matrix as A[0, n-1][0, m1+m2].
*/
private double[][] A;
/**
* The size of matrix.
*/
private int n;
/**
* The number of subdiagonal rows.
*/
private int m1;
/**
* The number of superdiagonal rows.
*/
private int m2;
/**
* The upper triangular matrix of LU decomposition.
*/
private double[][] au;
/**
* The lower triangular matrix of LU decomposition.
*/
private double[][] al;
/**
* index[0,n-1] records the row permutation effected by the partial pivoting.
*/
private int[] index;
/**
* d is +/-1 depending on whether the number of row interchanges was even
* or odd. respectively.
*/
private double d;
/**
* Constructor of an n-by-n band-diagonal matrix A with m subdiagonal
* rows and m superdiagonal rows.
* @param n the dimensionality of matrix.
* @param m the number of subdiagonal and superdiagonal rows.
*/
public BandMatrix(int n, int m) {
this(n, m, m);
}
/**
* Constructor of an n-by-n band-diagonal matrix A with m1 subdiagonal
* rows and m2 superdiagonal rows.
* @param n the dimensionality of matrix.
* @param m1 the number of subdiagonal rows.
* @param m2 the number of superdiagonal rows.
*/
public BandMatrix(int n, int m1, int m2) {
this.n = n;
this.m1 = m1;
this.m2 = m2;
A = new double[n][m1+m2+1];
}
@Override
public int nrows() {
return n;
}
@Override
public int ncols() {
return n;
}
@Override
public double get(int i, int j) {
return A[i][j-i+m1];
}
@Override
public BandMatrix set(int i, int j, double x) {
A[i][j-i+m1] = x;
return this;
}
/**
* Returns the matrix transpose.
* @return the transpose of matrix.
*/
public BandMatrix transpose() {
BandMatrix at = new BandMatrix(n, m2, m1);
for (int i = 0; i < n; i++) {
for (int j = i-m2; j <= i+m1; j++) {
if (j >= 0 && j < n) {
at.set(i, j, get(j,i));
}
}
}
return at;
}
/**
* Returns the largest eigen pair of matrix with the power iteration
* under the assumptions A has an eigenvalue that is strictly greater
* in magnitude than its other its other eigenvalues and the starting
* vector has a nonzero component in the direction of an eigenvector
* associated with the dominant eigenvalue.
* @param v is the non-zero initial guess of the eigen vector on input.
* On output, it is the eigen vector corresponding largest eigen value.
* @return the largest eigen value.
*/
public double eigen(double[] v) {
if (m1 != m2) {
throw new UnsupportedOperationException("The matrix is not square.");
}
return EigenValueDecomposition.eigen(this, v);
}
/**
* Returns the k largest eigen pairs. Only works for symmetric matrix.
*/
public EigenValueDecomposition eigen(int k) {
if (m1 != m2) {
throw new UnsupportedOperationException("The matrix is not square.");
}
return EigenValueDecomposition.decompose(this, k);
}
/**
* Returns the matrix determinant.
*/
public double det() {
if (au == null) {
decompose();
}
double dd = d;
for (int i = 0; i < n; i++) {
dd *= au[i][0];
}
return dd;
}
/**
* LU decomposition.
*/
public void decompose() {
final double TINY = 1.0e-40;
int mm = m1 + m2 + 1;
index = new int[n];
au = new double[n][mm];
al = new double[n][m1];
for (int i = 0; i < A.length; i++) {
System.arraycopy(A[i], 0, au[i], 0, A[i].length);
}
double dum;
int l = m1;
for (int i = 0; i < m1; i++) {
for (int j = m1 - i; j < mm; j++) {
au[i][j - l] = au[i][j];
}
l--;
for (int j = mm - l - 1; j < mm; j++)
au[i][j] = 0.0;
}
d = 1.0;
l = m1;
for (int k = 0; k < n; k++) {
dum = au[k][0];
int i = k;
if (l < n) {
l++;
}
for (int j = k + 1; j < l; j++) {
if (Math.abs(au[j][0]) > Math.abs(dum)) {
dum = au[j][0];
i = j;
}
}
index[k] = i + 1;
if (dum == 0.0) {
au[k][0] = TINY;
}
if (i != k) {
d = -d;
// swap au[k], au[i]
double[] swap = au[k];
au[k] = au[i];
au[i] = swap;
}
for (i = k + 1; i < l; i++) {
dum = au[i][0] / au[k][0];
al[k][i - k - 1] = dum;
for (int j = 1; j < mm; j++) {
au[i][j - 1] = au[i][j] - dum * au[k][j];
}
au[i][mm - 1] = 0.0;
}
}
}
@Override
public void ax(double[] x, double[] y) {
if (x.length != n) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but x is %d x 1", n, n, x.length));
}
if (y.length != n) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but y is %d x 1", n, n, y.length));
}
Arrays.fill(y, 0.0);
for (int i = 0; i < n; i++) {
int k = i - m1;
int tmploop = Math.min(m1 + m2 + 1, n - k);
for (int j = Math.max(0, -k); j < tmploop; j++) {
y[i] += A[i][j] * x[j + k];
}
}
}
@Override
public void axpy(double[] x, double[] y) {
if (x.length != n) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but x is %d x 1", n, n, x.length));
}
if (y.length != n) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but y is %d x 1", n, n, y.length));
}
for (int i = 0; i < n; i++) {
int k = i - m1;
int tmploop = Math.min(m1 + m2 + 1, n - k);
for (int j = Math.max(0, -k); j < tmploop; j++) {
y[i] += A[i][j] * x[j + k];
}
}
}
@Override
public void axpy(double[] x, double[] y, double b) {
if (x.length != n) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but x is %d x 1", n, n, x.length));
}
if (y.length != n) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but y is %d x 1", n, n, y.length));
}
for (int i = 0; i < n; i++) {
int k = i - m1;
int tmploop = Math.min(m1 + m2 + 1, n - k);
y[i] *= b;
for (int j = Math.max(0, -k); j < tmploop; j++) {
y[i] += A[i][j] * x[j + k];
}
}
}
@Override
public void atx(double[] x, double[] y) {
if (x.length != n) {
throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but x is 1 x %d", n, n, x.length));
}
if (y.length != n) {
throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but y is 1 x %d", n, n, y.length));
}
Arrays.fill(y, 0.0);
for (int i = 0; i < n; i++) {
for (int j = -m2; j <= m1; j++) {
if (i + j >= 0 && i + j < n) {
y[i] += A[i + j][m1 - j] * x[i + j];
}
}
}
}
@Override
public void atxpy(double[] x, double[] y) {
if (x.length != n) {
throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but x is 1 x %d", n, n, x.length));
}
if (y.length != n) {
throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but y is 1 x %d", n, n, y.length));
}
for (int i = 0; i < n; i++) {
for (int j = -m2; j <= m1; j++) {
if (i + j >= 0 && i + j < n) {
y[i] += A[i + j][m1 - j] * x[i + j];
}
}
}
}
@Override
public void atxpy(double[] x, double[] y, double b) {
if (x.length != n) {
throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but x is 1 x %d", n, n, x.length));
}
if (y.length != n) {
throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but y is 1 x %d", n, n, y.length));
}
for (int i = 0; i < n; i++) {
y[i] *= b;
for (int j = -m2; j <= m1; j++) {
if (i + j >= 0 && i + j < n) {
y[i] += A[i + j][m1 - j] * x[i + j];
}
}
}
}
@Override
public void asolve(double[] b, double[] x) {
for (int i = 0; i < n; i++) {
x[i] = A[i][m1] != 0.0 ? b[i] / A[i][m1] : b[i];
}
}
/**
* Solve A*x = b. b will be overwritten with the solution vector on output.
* @param b a vector with as many rows as A.
* @throws RuntimeException if matrix is singular.
*/
public void solve(double[] b) {
solve(b, b);
}
/**
* Solve A*x = b.
* @param b a vector with as many rows as A.
* @param x is output vector so that L*U*X = b(piv,:)
* @throws RuntimeException if matrix is singular.
*/
public void solve(double[] b, double[] x) {
if (b.length != n) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but b is %d x 1", n, n, b.length));
}
if (b.length != x.length) {
throw new IllegalArgumentException("b and x dimensions do not agree.");
}
if (au == null) {
decompose();
}
System.arraycopy(b, 0, x, 0, n);
int mm = m1 + m2 + 1;
int l = m1;
for (int k = 0; k < n; k++) {
int j = index[k] - 1;
if (j != k) {
// swap x[k] and x[j]
double swap = x[k];
x[k] = x[j];
x[j] = swap;
}
if (l < n) {
l++;
}
for (j = k + 1; j < l; j++) {
x[j] -= al[k][j - k - 1] * x[k];
}
}
l = 1;
for (int i = n - 1; i >= 0; i--) {
double dum = x[i];
for (int k = 1; k < l; k++) {
dum -= au[i][k] * x[k + i];
}
x[i] = dum / au[i][0];
if (l < mm) {
l++;
}
}
}
/**
* Iteratively improve a solution to linear equations.
*
* @param b right hand side of linear equations.
* @param x a solution to linear equations.
*/
public void improve(double[] b, double[] x) {
if (b.length != n || x.length != n) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but b is %d x 1 and x is %d x 1", n, n, b.length, x.length));
}
// Calculate the right-hand side, accumulating the residual
// in higher precision.
double[] r = b.clone();
axpy(x, r, -1.0);
// Solve for the error term.
solve(r);
// Subtract the error from the old soluiton.
for (int i = 0; i < n; i++) {
x[i] -= r[i];
}
}
}