All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.matrix.BandMatrix Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.math.matrix;

import java.util.Arrays;

/**
 * A band matrix is a sparse matrix, whose non-zero entries are confined to
 * a diagonal band, comprising the main diagonal and zero or more diagonals
 * on either side.
 * 

* In numerical analysis, matrices from finite element or finite difference * problems are often banded. Such matrices can be viewed as descriptions * of the coupling between the problem variables; the bandedness corresponds * to the fact that variables are not coupled over arbitrarily large distances. * Such matrices can be further divided - for instance, banded matrices exist * where every element in the band is nonzero. These often arise when * discretizing one-dimensional problems. Problems in higher dimensions also * lead to banded matrices, in which case the band itself also tends to be sparse. * For instance, a partial differential equation on a square domain (using * central differences) will yield a matrix with a half-bandwidth equal to the * square root of the matrix dimension, but inside the band only 5 diagonals are * nonzero. Unfortunately, applying Gaussian elimination (or equivalently an * LU decomposition) to such a matrix results in the band being filled in by * many non-zero elements. As sparse matrices lend themselves to more efficient * computation than dense matrices, there has been much research focused on * finding ways to minimize the bandwidth (or directly minimize the fill in) * by applying permutations to the matrix, or other such equivalence or * similarity transformations. *

* From a computational point of view, working with band matrices is always * preferential to working with similarly dimensioned dense square matrices. * A band matrix can be likened in complexity to a rectangular matrix whose * row dimension is equal to the bandwidth of the band matrix. Thus the work * involved in performing operations such as multiplication falls significantly, * often leading to huge savings in terms of calculation time and complexity. *

* Given a n-by-n band matrix with m1 rows below the diagonal and m2 rows above. * The matrix is compactly stored in an array A[0,n-1][0,m1+m2]. The diagonal * elements are in A[0,n-1][m1]. Subdiagonal elements are in A[j,n-1][0,m1-1] * with j > 0 appropriate to the number of elements on each subdiagonal. * Superdiagonal elements are in A[0,j][m1+1,m2+m2] * with j < n-1 appropriate to the number of elements on each superdiagonal. * * @author Haifeng Li */ public class BandMatrix implements IMatrix { /** * Compact store of band matrix as A[0, n-1][0, m1+m2]. */ private double[][] A; /** * The size of matrix. */ private int n; /** * The number of subdiagonal rows. */ private int m1; /** * The number of superdiagonal rows. */ private int m2; /** * The upper triangular matrix of LU decomposition. */ private double[][] au; /** * The lower triangular matrix of LU decomposition. */ private double[][] al; /** * index[0,n-1] records the row permutation effected by the partial pivoting. */ private int[] index; /** * d is +/-1 depending on whether the number of row interchanges was even * or odd. respectively. */ private double d; /** * Constructor of an n-by-n band-diagonal matrix A with m subdiagonal * rows and m superdiagonal rows. * @param n the dimensionality of matrix. * @param m the number of subdiagonal and superdiagonal rows. */ public BandMatrix(int n, int m) { this(n, m, m); } /** * Constructor of an n-by-n band-diagonal matrix A with m1 subdiagonal * rows and m2 superdiagonal rows. * @param n the dimensionality of matrix. * @param m1 the number of subdiagonal rows. * @param m2 the number of superdiagonal rows. */ public BandMatrix(int n, int m1, int m2) { this.n = n; this.m1 = m1; this.m2 = m2; A = new double[n][m1+m2+1]; } @Override public int nrows() { return n; } @Override public int ncols() { return n; } @Override public double get(int i, int j) { return A[i][j-i+m1]; } @Override public BandMatrix set(int i, int j, double x) { A[i][j-i+m1] = x; return this; } /** * Returns the matrix transpose. * @return the transpose of matrix. */ public BandMatrix transpose() { BandMatrix at = new BandMatrix(n, m2, m1); for (int i = 0; i < n; i++) { for (int j = i-m2; j <= i+m1; j++) { if (j >= 0 && j < n) { at.set(i, j, get(j,i)); } } } return at; } /** * Returns the largest eigen pair of matrix with the power iteration * under the assumptions A has an eigenvalue that is strictly greater * in magnitude than its other its other eigenvalues and the starting * vector has a nonzero component in the direction of an eigenvector * associated with the dominant eigenvalue. * @param v is the non-zero initial guess of the eigen vector on input. * On output, it is the eigen vector corresponding largest eigen value. * @return the largest eigen value. */ public double eigen(double[] v) { if (m1 != m2) { throw new UnsupportedOperationException("The matrix is not square."); } return EigenValueDecomposition.eigen(this, v); } /** * Returns the k largest eigen pairs. Only works for symmetric matrix. */ public EigenValueDecomposition eigen(int k) { if (m1 != m2) { throw new UnsupportedOperationException("The matrix is not square."); } return EigenValueDecomposition.decompose(this, k); } /** * Returns the matrix determinant. */ public double det() { if (au == null) { decompose(); } double dd = d; for (int i = 0; i < n; i++) { dd *= au[i][0]; } return dd; } /** * LU decomposition. */ public void decompose() { final double TINY = 1.0e-40; int mm = m1 + m2 + 1; index = new int[n]; au = new double[n][mm]; al = new double[n][m1]; for (int i = 0; i < A.length; i++) { System.arraycopy(A[i], 0, au[i], 0, A[i].length); } double dum; int l = m1; for (int i = 0; i < m1; i++) { for (int j = m1 - i; j < mm; j++) { au[i][j - l] = au[i][j]; } l--; for (int j = mm - l - 1; j < mm; j++) au[i][j] = 0.0; } d = 1.0; l = m1; for (int k = 0; k < n; k++) { dum = au[k][0]; int i = k; if (l < n) { l++; } for (int j = k + 1; j < l; j++) { if (Math.abs(au[j][0]) > Math.abs(dum)) { dum = au[j][0]; i = j; } } index[k] = i + 1; if (dum == 0.0) { au[k][0] = TINY; } if (i != k) { d = -d; // swap au[k], au[i] double[] swap = au[k]; au[k] = au[i]; au[i] = swap; } for (i = k + 1; i < l; i++) { dum = au[i][0] / au[k][0]; al[k][i - k - 1] = dum; for (int j = 1; j < mm; j++) { au[i][j - 1] = au[i][j] - dum * au[k][j]; } au[i][mm - 1] = 0.0; } } } @Override public void ax(double[] x, double[] y) { if (x.length != n) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but x is %d x 1", n, n, x.length)); } if (y.length != n) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but y is %d x 1", n, n, y.length)); } Arrays.fill(y, 0.0); for (int i = 0; i < n; i++) { int k = i - m1; int tmploop = Math.min(m1 + m2 + 1, n - k); for (int j = Math.max(0, -k); j < tmploop; j++) { y[i] += A[i][j] * x[j + k]; } } } @Override public void axpy(double[] x, double[] y) { if (x.length != n) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but x is %d x 1", n, n, x.length)); } if (y.length != n) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but y is %d x 1", n, n, y.length)); } for (int i = 0; i < n; i++) { int k = i - m1; int tmploop = Math.min(m1 + m2 + 1, n - k); for (int j = Math.max(0, -k); j < tmploop; j++) { y[i] += A[i][j] * x[j + k]; } } } @Override public void axpy(double[] x, double[] y, double b) { if (x.length != n) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but x is %d x 1", n, n, x.length)); } if (y.length != n) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but y is %d x 1", n, n, y.length)); } for (int i = 0; i < n; i++) { int k = i - m1; int tmploop = Math.min(m1 + m2 + 1, n - k); y[i] *= b; for (int j = Math.max(0, -k); j < tmploop; j++) { y[i] += A[i][j] * x[j + k]; } } } @Override public void atx(double[] x, double[] y) { if (x.length != n) { throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but x is 1 x %d", n, n, x.length)); } if (y.length != n) { throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but y is 1 x %d", n, n, y.length)); } Arrays.fill(y, 0.0); for (int i = 0; i < n; i++) { for (int j = -m2; j <= m1; j++) { if (i + j >= 0 && i + j < n) { y[i] += A[i + j][m1 - j] * x[i + j]; } } } } @Override public void atxpy(double[] x, double[] y) { if (x.length != n) { throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but x is 1 x %d", n, n, x.length)); } if (y.length != n) { throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but y is 1 x %d", n, n, y.length)); } for (int i = 0; i < n; i++) { for (int j = -m2; j <= m1; j++) { if (i + j >= 0 && i + j < n) { y[i] += A[i + j][m1 - j] * x[i + j]; } } } } @Override public void atxpy(double[] x, double[] y, double b) { if (x.length != n) { throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but x is 1 x %d", n, n, x.length)); } if (y.length != n) { throw new IllegalArgumentException(String.format("Column dimensions do not agree: A is %d x %d, but y is 1 x %d", n, n, y.length)); } for (int i = 0; i < n; i++) { y[i] *= b; for (int j = -m2; j <= m1; j++) { if (i + j >= 0 && i + j < n) { y[i] += A[i + j][m1 - j] * x[i + j]; } } } } @Override public void asolve(double[] b, double[] x) { for (int i = 0; i < n; i++) { x[i] = A[i][m1] != 0.0 ? b[i] / A[i][m1] : b[i]; } } /** * Solve A*x = b. b will be overwritten with the solution vector on output. * @param b a vector with as many rows as A. * @throws RuntimeException if matrix is singular. */ public void solve(double[] b) { solve(b, b); } /** * Solve A*x = b. * @param b a vector with as many rows as A. * @param x is output vector so that L*U*X = b(piv,:) * @throws RuntimeException if matrix is singular. */ public void solve(double[] b, double[] x) { if (b.length != n) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but b is %d x 1", n, n, b.length)); } if (b.length != x.length) { throw new IllegalArgumentException("b and x dimensions do not agree."); } if (au == null) { decompose(); } System.arraycopy(b, 0, x, 0, n); int mm = m1 + m2 + 1; int l = m1; for (int k = 0; k < n; k++) { int j = index[k] - 1; if (j != k) { // swap x[k] and x[j] double swap = x[k]; x[k] = x[j]; x[j] = swap; } if (l < n) { l++; } for (j = k + 1; j < l; j++) { x[j] -= al[k][j - k - 1] * x[k]; } } l = 1; for (int i = n - 1; i >= 0; i--) { double dum = x[i]; for (int k = 1; k < l; k++) { dum -= au[i][k] * x[k + i]; } x[i] = dum / au[i][0]; if (l < mm) { l++; } } } /** * Iteratively improve a solution to linear equations. * * @param b right hand side of linear equations. * @param x a solution to linear equations. */ public void improve(double[] b, double[] x) { if (b.length != n || x.length != n) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but b is %d x 1 and x is %d x 1", n, n, b.length, x.length)); } // Calculate the right-hand side, accumulating the residual // in higher precision. double[] r = b.clone(); axpy(x, r, -1.0); // Solve for the error term. solve(r); // Subtract the error from the old soluiton. for (int i = 0; i < n; i++) { x[i] -= r[i]; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy