smile.math.matrix.CholeskyDecomposition Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.matrix;
import java.util.Arrays;
import smile.math.Math;
/**
* Cholesky decomposition is a decomposition of a symmetric, positive-definite
* matrix into a lower triangular matrix L and the transpose of the lower
* triangular matrix such that A = L*L'. The lower triangular matrix is the
* Cholesky triangle of the original, positive-definite matrix. When it is
* applicable, the Cholesky decomposition is roughly twice as efficient as the LU
* decomposition for solving systems of linear equations.
*
* The Cholesky decomposition is mainly used for the numerical solution of
* linear equations. The Cholesky decomposition is also commonly used in
* the Monte Carlo method for simulating systems with multiple correlated
* variables: The matrix of inter-variable correlations is decomposed,
* to give the lower-triangular L. Applying this to a vector of uncorrelated
* simulated shocks, u, produces a shock vector Lu with the covariance
* properties of the system being modeled.
*
* Unscented Kalman filters commonly use the Cholesky decomposition to choose
* a set of so-called sigma points. The Kalman filter tracks the average
* state of a system as a vector x of length n and covariance as an n-by-n
* matrix P. The matrix P is always positive semi-definite, and can be
* decomposed into L*L'. The columns of L can be added and subtracted from
* the mean x to form a set of 2n vectors called sigma points. These sigma
* points completely capture the mean and covariance of the system state.
*
* If the matrix is not positive definite, an exception will be thrown out from
* the method decompose().
*
* @author Haifeng Li
*/
public class CholeskyDecomposition {
/**
* Array for internal storage of decomposition.
*/
private double[][] L;
/**
* Constructor. Used by newInstance().
*/
private CholeskyDecomposition() {
}
/**
* Constructor. The decomposition is already available, e.g. from QR
* decomposition.
* @param L decomposition matrix.
*/
public static CholeskyDecomposition newInstance(double[][] L) {
CholeskyDecomposition cholesky = new CholeskyDecomposition();
cholesky.L = L;
return cholesky;
}
/**
* Constructor. Cholesky decomposition for symmetric and positive definite matrix.
* A new matrix will allocated to store the decomposition.
* @param A square, symmetric matrix. Only the lower triangular part
* will be used in the decomposition. The user can just store this half part
* to save space.
* @throws IllegalArgumentException if the matrix is not positive definite.
*/
public CholeskyDecomposition(double[][] A) {
this(A, false);
}
/**
* Constructor. Cholesky decomposition for symmetric and positive definite matrix. The
* user can specify if the decomposition takes in place, i.e. if
* the decomposition will be stored in the input matrix.
* Otherwise, a new matrix will be allocated to store the decomposition.
*
* @param A square symmetric matrix. Only the lower triangular part
* will be used in the decomposition. The user can just store this half part
* to save space.
* @param overwrite true if the decomposition will be taken in place.
* Otherwise, a new matrix will be allocated to store the decomposition. It
* is very useful in practice if the matrix is huge.
* @throws IllegalArgumentException if the matrix is not positive definite.
*/
public CholeskyDecomposition(double[][] A, boolean overwrite) {
int n = A.length;
if (n != A[n - 1].length) {
throw new IllegalArgumentException("The matrix is not square.");
}
L = A;
if (!overwrite) {
L = new double[n][];
for (int i = 0; i < n; i++) {
L[i] = new double[i + 1];
}
}
// Main loop.
for (int j = 0; j < n; j++) {
double[] Lrowj = L[j];
double d = 0.0;
for (int k = 0; k < j; k++) {
double[] Lrowk = L[k];
double s = 0.0;
for (int i = 0; i < k; i++) {
s += Lrowk[i] * Lrowj[i];
}
Lrowj[k] = s = (A[j][k] - s) / L[k][k];
d = d + s * s;
}
d = A[j][j] - d;
if (d < 0.0) {
throw new IllegalArgumentException("The matrix is not positive definite.");
}
L[j][j] = Math.sqrt(d);
if (L == A && L[j].length == n) {
Arrays.fill(L[j], j+1, n, 0.0);
}
}
}
/**
* Returns lower triangular factor.
*/
public double[][] getL() {
return L;
}
/**
* Returns the matrix determinant
*/
public double det() {
double d = 1.0;
for (int i = 0; i < L.length; i++) {
d *= L[i][i];
}
return d * d;
}
/**
* Returns the matrix inverse.
*/
public double[][] inverse() {
double[][] I = Math.eye(L.length);
solve(I);
return I;
}
/**
* Solve the linear system A * x = b. On output, b will be overwritten with
* the solution vector.
* @param b the right hand side of linear systems. On output, b will be
* overwritten with solution vector.
*/
public void solve(double[] b) {
solve(b, b);
}
/**
* Solve the linear system A * x = b.
* @param b the right hand side of linear systems.
* @param x the solution vector.
*/
public void solve(double[] b, double[] x) {
if (b.length != L.length) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but B is %d x 1", L.length, L.length, b.length));
}
if (b.length != x.length) {
throw new IllegalArgumentException("b and x dimensions do not agree.");
}
int n = b.length;
if (x != b) {
System.arraycopy(b, 0, x, 0, n);
}
// Solve L*Y = B;
for (int k = 0; k < n; k++) {
for (int i = 0; i < k; i++) {
x[k] -= x[i] * L[k][i];
}
x[k] /= L[k][k];
}
// Solve L'*X = Y;
for (int k = n - 1; k >= 0; k--) {
for (int i = k + 1; i < n; i++) {
x[k] -= x[i] * L[i][k];
}
x[k] /= L[k][k];
}
}
/**
* Solve the linear system A * X = B. On output, B will be overwritten with
* the solution matrix.
* @param B the right hand side of linear systems.
*/
public void solve(double[][] B) {
solve(B, B);
}
/**
* Solve the linear system A * X = B.
* @param B the right hand side of linear systems.
* @param X the solution matrix.
*/
public void solve(double[][] B, double[][] X) {
if (B.length != L.length) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but B is %d x %d", L.length, L.length, B.length, B[0].length));
}
if (X.length != B.length || X[0].length != B[0].length) {
throw new IllegalArgumentException("B and X dimensions do not agree.");
}
int n = B.length;
int nx = B[0].length;
if (X != B) {
for (int i = 0; i < n; i++) {
System.arraycopy(B[i], 0, X[i], 0, nx);
}
}
// Solve L*Y = B;
for (int k = 0; k < n; k++) {
for (int j = 0; j < nx; j++) {
for (int i = 0; i < k; i++) {
X[k][j] -= X[i][j] * L[k][i];
}
X[k][j] /= L[k][k];
}
}
// Solve L'*X = Y;
for (int k = n - 1; k >= 0; k--) {
for (int j = 0; j < nx; j++) {
for (int i = k + 1; i < n; i++) {
X[k][j] -= X[i][j] * L[i][k];
}
X[k][j] /= L[k][k];
}
}
}
}