All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.matrix.CholeskyDecomposition Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/
package smile.math.matrix;

import java.util.Arrays;
import smile.math.Math;

/**
 * Cholesky decomposition is a decomposition of a symmetric, positive-definite
 * matrix into a lower triangular matrix L and the transpose of the lower
 * triangular matrix such that A = L*L'. The lower triangular matrix is the
 * Cholesky triangle of the original, positive-definite matrix. When it is
 * applicable, the Cholesky decomposition is roughly twice as efficient as the LU
 * decomposition for solving systems of linear equations.
 * 

* The Cholesky decomposition is mainly used for the numerical solution of * linear equations. The Cholesky decomposition is also commonly used in * the Monte Carlo method for simulating systems with multiple correlated * variables: The matrix of inter-variable correlations is decomposed, * to give the lower-triangular L. Applying this to a vector of uncorrelated * simulated shocks, u, produces a shock vector Lu with the covariance * properties of the system being modeled. *

* Unscented Kalman filters commonly use the Cholesky decomposition to choose * a set of so-called sigma points. The Kalman filter tracks the average * state of a system as a vector x of length n and covariance as an n-by-n * matrix P. The matrix P is always positive semi-definite, and can be * decomposed into L*L'. The columns of L can be added and subtracted from * the mean x to form a set of 2n vectors called sigma points. These sigma * points completely capture the mean and covariance of the system state. *

* If the matrix is not positive definite, an exception will be thrown out from * the method decompose(). * * @author Haifeng Li */ public class CholeskyDecomposition { /** * Array for internal storage of decomposition. */ private double[][] L; /** * Constructor. Used by newInstance(). */ private CholeskyDecomposition() { } /** * Constructor. The decomposition is already available, e.g. from QR * decomposition. * @param L decomposition matrix. */ public static CholeskyDecomposition newInstance(double[][] L) { CholeskyDecomposition cholesky = new CholeskyDecomposition(); cholesky.L = L; return cholesky; } /** * Constructor. Cholesky decomposition for symmetric and positive definite matrix. * A new matrix will allocated to store the decomposition. * @param A square, symmetric matrix. Only the lower triangular part * will be used in the decomposition. The user can just store this half part * to save space. * @throws IllegalArgumentException if the matrix is not positive definite. */ public CholeskyDecomposition(double[][] A) { this(A, false); } /** * Constructor. Cholesky decomposition for symmetric and positive definite matrix. The * user can specify if the decomposition takes in place, i.e. if * the decomposition will be stored in the input matrix. * Otherwise, a new matrix will be allocated to store the decomposition. * * @param A square symmetric matrix. Only the lower triangular part * will be used in the decomposition. The user can just store this half part * to save space. * @param overwrite true if the decomposition will be taken in place. * Otherwise, a new matrix will be allocated to store the decomposition. It * is very useful in practice if the matrix is huge. * @throws IllegalArgumentException if the matrix is not positive definite. */ public CholeskyDecomposition(double[][] A, boolean overwrite) { int n = A.length; if (n != A[n - 1].length) { throw new IllegalArgumentException("The matrix is not square."); } L = A; if (!overwrite) { L = new double[n][]; for (int i = 0; i < n; i++) { L[i] = new double[i + 1]; } } // Main loop. for (int j = 0; j < n; j++) { double[] Lrowj = L[j]; double d = 0.0; for (int k = 0; k < j; k++) { double[] Lrowk = L[k]; double s = 0.0; for (int i = 0; i < k; i++) { s += Lrowk[i] * Lrowj[i]; } Lrowj[k] = s = (A[j][k] - s) / L[k][k]; d = d + s * s; } d = A[j][j] - d; if (d < 0.0) { throw new IllegalArgumentException("The matrix is not positive definite."); } L[j][j] = Math.sqrt(d); if (L == A && L[j].length == n) { Arrays.fill(L[j], j+1, n, 0.0); } } } /** * Returns lower triangular factor. */ public double[][] getL() { return L; } /** * Returns the matrix determinant */ public double det() { double d = 1.0; for (int i = 0; i < L.length; i++) { d *= L[i][i]; } return d * d; } /** * Returns the matrix inverse. */ public double[][] inverse() { double[][] I = Math.eye(L.length); solve(I); return I; } /** * Solve the linear system A * x = b. On output, b will be overwritten with * the solution vector. * @param b the right hand side of linear systems. On output, b will be * overwritten with solution vector. */ public void solve(double[] b) { solve(b, b); } /** * Solve the linear system A * x = b. * @param b the right hand side of linear systems. * @param x the solution vector. */ public void solve(double[] b, double[] x) { if (b.length != L.length) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but B is %d x 1", L.length, L.length, b.length)); } if (b.length != x.length) { throw new IllegalArgumentException("b and x dimensions do not agree."); } int n = b.length; if (x != b) { System.arraycopy(b, 0, x, 0, n); } // Solve L*Y = B; for (int k = 0; k < n; k++) { for (int i = 0; i < k; i++) { x[k] -= x[i] * L[k][i]; } x[k] /= L[k][k]; } // Solve L'*X = Y; for (int k = n - 1; k >= 0; k--) { for (int i = k + 1; i < n; i++) { x[k] -= x[i] * L[i][k]; } x[k] /= L[k][k]; } } /** * Solve the linear system A * X = B. On output, B will be overwritten with * the solution matrix. * @param B the right hand side of linear systems. */ public void solve(double[][] B) { solve(B, B); } /** * Solve the linear system A * X = B. * @param B the right hand side of linear systems. * @param X the solution matrix. */ public void solve(double[][] B, double[][] X) { if (B.length != L.length) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but B is %d x %d", L.length, L.length, B.length, B[0].length)); } if (X.length != B.length || X[0].length != B[0].length) { throw new IllegalArgumentException("B and X dimensions do not agree."); } int n = B.length; int nx = B[0].length; if (X != B) { for (int i = 0; i < n; i++) { System.arraycopy(B[i], 0, X[i], 0, nx); } } // Solve L*Y = B; for (int k = 0; k < n; k++) { for (int j = 0; j < nx; j++) { for (int i = 0; i < k; i++) { X[k][j] -= X[i][j] * L[k][i]; } X[k][j] /= L[k][k]; } } // Solve L'*X = Y; for (int k = n - 1; k >= 0; k--) { for (int j = 0; j < nx; j++) { for (int i = k + 1; i < n; i++) { X[k][j] -= X[i][j] * L[i][k]; } X[k][j] /= L[k][k]; } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy