All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.matrix.LUDecomposition Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.math.matrix;

import smile.math.Math;

/**
 * For an m-by-n matrix A with m ≥ n, the LU decomposition is an m-by-n
 * unit lower triangular matrix L, an n-by-n upper triangular matrix U,
 * and a permutation vector piv of length m so that A(piv,:) = L*U.
 * If m < n, then L is m-by-m and U is m-by-n.
 * 

* The LU decompostion with pivoting always exists, even if the matrix is * singular. The primary use of the LU decomposition is in the solution of * square systems of simultaneous linear equations if it is not singular. *

* This decomposition can also be used to calculate the determinant. * * @author Haifeng Li */ public class LUDecomposition { /** * Array for internal storage of decomposition. */ private double[][] LU; /** * pivot sign. */ private int pivsign; /** * Internal storage of pivot vector. */ private int[] piv; /** * Constructor. The decomposition will be stored in a new create * matrix. The input matrix will not be modified. * @param A rectangular matrix */ public LUDecomposition(double[][] A) { this(A, false); } /** * Constructor. The user can specify if the decomposition takes in * place, i.e. if the decomposition will be stored in the input matrix. * Otherwise, a new matrix will be allocated to store the decomposition. * @param A rectangular matrix * @param overwrite if the decomposition will be taken in place. If true, * the decomposition will be stored in the input matrix to save space. It * is very useful in practice if the matrix is huge. Otherwise, a new * matrix will created to store the decomposition. */ public LUDecomposition(double[][] A, boolean overwrite) { // Use a "left-looking", dot-product, Crout/Doolittle algorithm. int m = A.length; int n = A[0].length; LU = A; if (!overwrite) { LU = new double[m][n]; for (int i = 0; i < m; i++) System.arraycopy(A[i], 0, LU[i], 0, n); } piv = new int[m]; for (int i = 0; i < m; i++) { piv[i] = i; } pivsign = 1; double[] LUrowi; double[] LUcolj = new double[m]; for (int j = 0; j < n; j++) { // Make a copy of the j-th column to localize references. for (int i = 0; i < m; i++) { LUcolj[i] = LU[i][j]; } // Apply previous transformations. for (int i = 0; i < m; i++) { LUrowi = LU[i]; // Most of the time is spent in the following dot product. int kmax = Math.min(i, j); double s = 0.0; for (int k = 0; k < kmax; k++) { s += LUrowi[k] * LUcolj[k]; } LUrowi[j] = LUcolj[i] -= s; } // Find pivot and exchange if necessary. int p = j; for (int i = j + 1; i < m; i++) { if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { p = i; } } if (p != j) { for (int k = 0; k < n; k++) { double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t; } int k = piv[p]; piv[p] = piv[j]; piv[j] = k; pivsign = -pivsign; } // Compute multipliers. if (j < m & LU[j][j] != 0.0) { for (int i = j + 1; i < m; i++) { LU[i][j] /= LU[j][j]; } } } } /** * Returns true if the matrix is singular or false otherwise. */ public boolean isSingular() { int n = LU[0].length; for (int j = 0; j < n; j++) { if (LU[j][j] == 0) { return true; } } return false; } /** * Returns the lower triangular factor. */ public double[][] getL() { int m = LU.length; int n = LU[0].length; double[][] L = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i > j) { L[i][j] = LU[i][j]; } else if (i == j) { L[i][j] = 1.0; } else { L[i][j] = 0.0; } } } return L; } /** * Returns the upper triangular factor. */ public double[][] getU() { int m = LU.length; int n = LU[0].length; double[][] U = new double[m][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i <= j) { U[i][j] = LU[i][j]; } else { U[i][j] = 0.0; } } } return U; } /** * Returns the pivot permutation vector. */ public int[] getPivot() { return piv; } /** * Returns the matrix determinant */ public double det() { int m = LU.length; int n = LU[0].length; if (m != n) throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", m, n)); double d = (double) pivsign; for (int j = 0; j < n; j++) { d *= LU[j][j]; } return d; } /** * Returns the matrix inverse. For pseudo inverse, use QRDecomposition. */ public double[][] inverse() { int m = LU.length; int n = LU[0].length; if (m != n) throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", m, n)); double[][] I = Math.eye(n); solve(I); return I; } /** * Solve A * x = b. b will be overwritten with the solution vector on output. * @param b right hand side of linear system. On output, it will be * overwritten with the solution vector * @exception RuntimeException if matrix is singular. */ public void solve(double[] b) { solve(b.clone(), b); } /** * Solve A * x = b. * @param b right hand side of linear system. * @param x the solution vector. * @exception RuntimeException if matrix is singular. */ public void solve(double[] b, double[] x) { int m = LU.length; int n = LU[0].length; if (m != n) { throw new UnsupportedOperationException("The matrix is not square."); } if (b.length != m) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but b is %d x 1", LU.length, LU[0].length, b.length)); } if (b.length != x.length) { throw new IllegalArgumentException("b and x dimensions do not agree."); } if (isSingular()) { throw new RuntimeException("Matrix is singular."); } // Copy right hand side with pivoting for (int i = 0; i < m; i++) { x[i] = b[piv[i]]; } // Solve L*Y = B(piv,:) for (int k = 0; k < n; k++) { for (int i = k + 1; i < n; i++) { x[i] -= x[k] * LU[i][k]; } } // Solve U*X = Y; for (int k = n - 1; k >= 0; k--) { x[k] /= LU[k][k]; for (int i = 0; i < k; i++) { x[i] -= x[k] * LU[i][k]; } } } /** * Solve A * X = B. B will be overwritten with the solution matrix on output. * @param B right hand side of linear system. On output, B will be * overwritten with the solution matrix. * @throws RuntimeException if matrix is singular. */ public void solve(double[][] B) { solve(B, B); } /** * Solve A * X = B. * @param B right hand side of linear system. * @param X the solution matrix. * @throws RuntimeException if matrix is singular. */ public void solve(double[][] B, double[][] X) { int m = LU.length; int n = LU[0].length; if (B.length != m) throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but B is %d x %d", LU.length, LU[0].length, B.length, B[0].length)); if (isSingular()) { throw new RuntimeException("Matrix is singular."); } if (X.length != B.length || X[0].length != B[0].length) { throw new IllegalArgumentException("B and X dimensions do not agree."); } // Copy right hand side with pivoting int nx = B[0].length; if (X == B) { double[][] x = new double[m][]; for (int i = 0; i < m; i++) { x[i] = B[piv[i]]; } System.arraycopy(x, 0, X, 0, m); } else { for (int i = 0; i < m; i++) { System.arraycopy(B[piv[i]], 0, X[i], 0, nx); } } // Solve L*Y = B(piv,:) for (int k = 0; k < n; k++) { for (int i = k + 1; i < n; i++) { for (int j = 0; j < nx; j++) { X[i][j] -= X[k][j] * LU[i][k]; } } } // Solve U*X = Y; for (int k = n - 1; k >= 0; k--) { for (int j = 0; j < nx; j++) { X[k][j] /= LU[k][k]; } for (int i = 0; i < k; i++) { for (int j = 0; j < nx; j++) { X[i][j] -= X[k][j] * LU[i][k]; } } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy