smile.math.matrix.LUDecomposition Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.matrix;
import smile.math.Math;
/**
* For an m-by-n matrix A with m ≥ n, the LU decomposition is an m-by-n
* unit lower triangular matrix L, an n-by-n upper triangular matrix U,
* and a permutation vector piv of length m so that A(piv,:) = L*U.
* If m < n, then L is m-by-m and U is m-by-n.
*
* The LU decompostion with pivoting always exists, even if the matrix is
* singular. The primary use of the LU decomposition is in the solution of
* square systems of simultaneous linear equations if it is not singular.
*
* This decomposition can also be used to calculate the determinant.
*
* @author Haifeng Li
*/
public class LUDecomposition {
/**
* Array for internal storage of decomposition.
*/
private double[][] LU;
/**
* pivot sign.
*/
private int pivsign;
/**
* Internal storage of pivot vector.
*/
private int[] piv;
/**
* Constructor. The decomposition will be stored in a new create
* matrix. The input matrix will not be modified.
* @param A rectangular matrix
*/
public LUDecomposition(double[][] A) {
this(A, false);
}
/**
* Constructor. The user can specify if the decomposition takes in
* place, i.e. if the decomposition will be stored in the input matrix.
* Otherwise, a new matrix will be allocated to store the decomposition.
* @param A rectangular matrix
* @param overwrite if the decomposition will be taken in place. If true,
* the decomposition will be stored in the input matrix to save space. It
* is very useful in practice if the matrix is huge. Otherwise, a new
* matrix will created to store the decomposition.
*/
public LUDecomposition(double[][] A, boolean overwrite) {
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
int m = A.length;
int n = A[0].length;
LU = A;
if (!overwrite) {
LU = new double[m][n];
for (int i = 0; i < m; i++)
System.arraycopy(A[i], 0, LU[i], 0, n);
}
piv = new int[m];
for (int i = 0; i < m; i++) {
piv[i] = i;
}
pivsign = 1;
double[] LUrowi;
double[] LUcolj = new double[m];
for (int j = 0; j < n; j++) {
// Make a copy of the j-th column to localize references.
for (int i = 0; i < m; i++) {
LUcolj[i] = LU[i][j];
}
// Apply previous transformations.
for (int i = 0; i < m; i++) {
LUrowi = LU[i];
// Most of the time is spent in the following dot product.
int kmax = Math.min(i, j);
double s = 0.0;
for (int k = 0; k < kmax; k++) {
s += LUrowi[k] * LUcolj[k];
}
LUrowi[j] = LUcolj[i] -= s;
}
// Find pivot and exchange if necessary.
int p = j;
for (int i = j + 1; i < m; i++) {
if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {
p = i;
}
}
if (p != j) {
for (int k = 0; k < n; k++) {
double t = LU[p][k];
LU[p][k] = LU[j][k];
LU[j][k] = t;
}
int k = piv[p];
piv[p] = piv[j];
piv[j] = k;
pivsign = -pivsign;
}
// Compute multipliers.
if (j < m & LU[j][j] != 0.0) {
for (int i = j + 1; i < m; i++) {
LU[i][j] /= LU[j][j];
}
}
}
}
/**
* Returns true if the matrix is singular or false otherwise.
*/
public boolean isSingular() {
int n = LU[0].length;
for (int j = 0; j < n; j++) {
if (LU[j][j] == 0) {
return true;
}
}
return false;
}
/**
* Returns the lower triangular factor.
*/
public double[][] getL() {
int m = LU.length;
int n = LU[0].length;
double[][] L = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i > j) {
L[i][j] = LU[i][j];
} else if (i == j) {
L[i][j] = 1.0;
} else {
L[i][j] = 0.0;
}
}
}
return L;
}
/**
* Returns the upper triangular factor.
*/
public double[][] getU() {
int m = LU.length;
int n = LU[0].length;
double[][] U = new double[m][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i <= j) {
U[i][j] = LU[i][j];
} else {
U[i][j] = 0.0;
}
}
}
return U;
}
/**
* Returns the pivot permutation vector.
*/
public int[] getPivot() {
return piv;
}
/**
* Returns the matrix determinant
*/
public double det() {
int m = LU.length;
int n = LU[0].length;
if (m != n)
throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", m, n));
double d = (double) pivsign;
for (int j = 0; j < n; j++) {
d *= LU[j][j];
}
return d;
}
/**
* Returns the matrix inverse. For pseudo inverse, use QRDecomposition.
*/
public double[][] inverse() {
int m = LU.length;
int n = LU[0].length;
if (m != n)
throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", m, n));
double[][] I = Math.eye(n);
solve(I);
return I;
}
/**
* Solve A * x = b. b will be overwritten with the solution vector on output.
* @param b right hand side of linear system. On output, it will be
* overwritten with the solution vector
* @exception RuntimeException if matrix is singular.
*/
public void solve(double[] b) {
solve(b.clone(), b);
}
/**
* Solve A * x = b.
* @param b right hand side of linear system.
* @param x the solution vector.
* @exception RuntimeException if matrix is singular.
*/
public void solve(double[] b, double[] x) {
int m = LU.length;
int n = LU[0].length;
if (m != n) {
throw new UnsupportedOperationException("The matrix is not square.");
}
if (b.length != m) {
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but b is %d x 1", LU.length, LU[0].length, b.length));
}
if (b.length != x.length) {
throw new IllegalArgumentException("b and x dimensions do not agree.");
}
if (isSingular()) {
throw new RuntimeException("Matrix is singular.");
}
// Copy right hand side with pivoting
for (int i = 0; i < m; i++) {
x[i] = b[piv[i]];
}
// Solve L*Y = B(piv,:)
for (int k = 0; k < n; k++) {
for (int i = k + 1; i < n; i++) {
x[i] -= x[k] * LU[i][k];
}
}
// Solve U*X = Y;
for (int k = n - 1; k >= 0; k--) {
x[k] /= LU[k][k];
for (int i = 0; i < k; i++) {
x[i] -= x[k] * LU[i][k];
}
}
}
/**
* Solve A * X = B. B will be overwritten with the solution matrix on output.
* @param B right hand side of linear system. On output, B will be
* overwritten with the solution matrix.
* @throws RuntimeException if matrix is singular.
*/
public void solve(double[][] B) {
solve(B, B);
}
/**
* Solve A * X = B.
* @param B right hand side of linear system.
* @param X the solution matrix.
* @throws RuntimeException if matrix is singular.
*/
public void solve(double[][] B, double[][] X) {
int m = LU.length;
int n = LU[0].length;
if (B.length != m)
throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but B is %d x %d", LU.length, LU[0].length, B.length, B[0].length));
if (isSingular()) {
throw new RuntimeException("Matrix is singular.");
}
if (X.length != B.length || X[0].length != B[0].length) {
throw new IllegalArgumentException("B and X dimensions do not agree.");
}
// Copy right hand side with pivoting
int nx = B[0].length;
if (X == B) {
double[][] x = new double[m][];
for (int i = 0; i < m; i++) {
x[i] = B[piv[i]];
}
System.arraycopy(x, 0, X, 0, m);
} else {
for (int i = 0; i < m; i++) {
System.arraycopy(B[piv[i]], 0, X[i], 0, nx);
}
}
// Solve L*Y = B(piv,:)
for (int k = 0; k < n; k++) {
for (int i = k + 1; i < n; i++) {
for (int j = 0; j < nx; j++) {
X[i][j] -= X[k][j] * LU[i][k];
}
}
}
// Solve U*X = Y;
for (int k = n - 1; k >= 0; k--) {
for (int j = 0; j < nx; j++) {
X[k][j] /= LU[k][k];
}
for (int i = 0; i < k; i++) {
for (int j = 0; j < nx; j++) {
X[i][j] -= X[k][j] * LU[i][k];
}
}
}
}
}