All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.matrix.QRDecomposition Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/
package smile.math.matrix;

import smile.math.Math;

/**
 * For an m-by-n matrix A with m ≥ n, the QR decomposition is an m-by-n
 * orthogonal matrix Q and an n-by-n upper triangular matrix R such that
 * A = Q*R.
 * 

* The QR decomposition always exists, even if the matrix does not have * full rank. The primary use of the QR decomposition is in the least squares * solution of non-square systems of simultaneous linear equations, where * {@link #isFullColumnRank} has to be true. *

* QR decomposition is also the basis for a particular eigenvalue algorithm, * the QR algorithm. * * @author Haifeng Li */ public class QRDecomposition { /** * Array for internal storage of decomposition. */ private double[][] QR; /** * Array for internal storage of diagonal of R. */ private double[] Rdiagonal; /** * Indicate if the matrix is singular. */ private boolean singular; /** * Constructor. QR Decomposition is computed by Householder reflections. * The decomposition will be stored in a new create matrix. The input matrix * will not be modified. * @param A rectangular matrix */ public QRDecomposition(double[][] A) { this(A, false); } /** * Constructor. QR Decomposition is computed by Householder reflections. The * user can specify if the decomposition takes in place, i.e. if * the decomposition will be stored in the input matrix. * Otherwise, a new matrix will be allocated to store the decomposition. * @param A rectangular matrix * @param overwrite true if the decomposition will be taken in place. If true, * the decomposition will be stored in the input matrix to save space. It * is very useful in practice if the matrix is huge. Otherwise, a new * matrix will created to store the decomposition. */ public QRDecomposition(double[][] A, boolean overwrite) { // Initialize. int m = A.length; int n = A[0].length; Rdiagonal = new double[n]; QR = A; if (!overwrite) { QR = new double[m][n]; for (int i = 0; i < m; i++) { System.arraycopy(A[i], 0, QR[i], 0, n); } } // Main loop. for (int k = 0; k < n; k++) { // Compute 2-norm of k-th column without under/overflow. double nrm = 0.0; for (int i = k; i < m; i++) { nrm = Math.hypot(nrm, QR[i][k]); } if (nrm != 0.0) { // Form k-th Householder vector. if (QR[k][k] < 0) { nrm = -nrm; } for (int i = k; i < m; i++) { QR[i][k] /= nrm; } QR[k][k] += 1.0; // Apply transformation to remaining columns. for (int j = k + 1; j < n; j++) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k] * QR[i][j]; } s = -s / QR[k][k]; for (int i = k; i < m; i++) { QR[i][j] += s * QR[i][k]; } } } Rdiagonal[k] = -nrm; } singular = false; for (int j = 0; j < Rdiagonal.length; j++) { if (Rdiagonal[j] == 0) { singular = true; break; } } } /** * Returns true if the matrix is full column rank. */ public boolean isFullColumnRank() { return !singular; } /** * Returns true if the matrix is singular. */ public boolean isSingular() { return singular; } /** * Returns the Householder vectors. * @return Lower trapezoidal matrix whose columns define the reflections */ public double[][] getH() { int m = QR.length; int n = QR[0].length; double[][] H = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i >= j) { H[i][j] = QR[i][j]; } else { H[i][j] = 0.0; } } } return H; } /** * Returns the Cholesky decomposition of A'A. */ public CholeskyDecomposition toCholesky() { int n = QR[0].length; double[][] L = new double[n][]; for (int i = 0; i < n; i++) { L[i] = new double[i+1]; L[i][i] = Rdiagonal[i]; for (int j = 0; j < i; j++) { L[i][j] = QR[j][i]; } } return CholeskyDecomposition.newInstance(L); } /** * Returns the upper triangular factor. */ public double[][] getR() { int m = QR.length; int n = QR[0].length; double[][] R = new double[m][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i < j) { R[i][j] = QR[i][j]; } else if (i == j) { R[i][j] = Rdiagonal[i]; } else { R[i][j] = 0.0; } } } return R; } /** * Returns the orthogonal factor. */ public double[][] getQ() { int m = QR.length; int n = QR[0].length; double[][] Q = new double[m][n]; for (int k = n - 1; k >= 0; k--) { for (int i = 0; i < m; i++) { Q[i][k] = 0.0; } Q[k][k] = 1.0; for (int j = k; j < n; j++) { if (QR[k][k] != 0) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k] * Q[i][j]; } s = -s / QR[k][k]; for (int i = k; i < m; i++) { Q[i][j] += s * QR[i][k]; } } } } return Q; } /** * Returns the matrix pseudo inverse. */ public double[][] inverse() { double[][] I = Math.eye(QR[0].length, QR.length); solve(I); return I; } /** * Solve the least squares A * x = b. On output, b will be overwritten with * the solution vector. * @param b right hand side of linear system. On output, b will be * overwritten with the solution vector. * @exception RuntimeException if matrix is rank deficient. */ public void solve(double[] b) { if (QR.length != QR[0].length) { throw new UnsupportedOperationException("In-place solver supports only square matrix."); } solve(b, b); } /** * Solve the least squares A*x = b. * @param b right hand side of linear system. * @param x the solution vector that minimizes the L2 norm of Q*R*x - b. * @exception RuntimeException if matrix is rank deficient. */ public void solve(double[] b, double[] x) { int m = QR.length; int n = QR[0].length; if (b.length != m) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but b is %d x 1", QR.length, QR[0].length, b.length)); } if (x.length != n) { throw new IllegalArgumentException("A and x dimensions do not agree."); } if (!isFullColumnRank()) { throw new RuntimeException("Matrix is rank deficient."); } // Compute Y = transpose(Q) * b double[] y = b; if (b != x) { y = b.clone(); } for (int k = 0; k < n; k++) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k] * y[i]; } s = -s / QR[k][k]; for (int i = k; i < m; i++) { y[i] += s * QR[i][k]; } } // Solve R*X = Y; for (int k = n - 1; k >= 0; k--) { x[k] = y[k] / Rdiagonal[k]; for (int i = 0; i < k; i++) { y[i] -= x[k] * QR[i][k]; } } } /** * Solve the least squares A * X = B. B will be overwritten with the solution * matrix on output. * @param B right hand side of linear system. B will be overwritten with * the solution matrix on output. * @exception RuntimeException Matrix is rank deficient. */ public void solve(double[][] B) { if (QR.length != QR[0].length) { throw new UnsupportedOperationException("In-place solver supports only square matrix."); } solve(B, B); } /** * Solve the least squares A * X = B. * @param B right hand side of linear system. * @param X the solution matrix that minimizes the L2 norm of Q*R*X - B. * @exception RuntimeException Matrix is rank deficient. */ public void solve(double[][] B, double[][] X) { if (B.length != QR.length) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but B is %d x %d", QR.length, QR.length, B.length, B[0].length)); } if (X.length != QR[0].length) { throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but X is %d x %d", QR.length, QR.length, X.length, X[0].length)); } if (B[0].length != X[0].length) { throw new IllegalArgumentException(String.format("B and X column dimension do not agree: B is %d x %d, but X is %d x %d", B.length, B[0].length, X.length, X[0].length)); } if (!isFullColumnRank()) { throw new RuntimeException("Matrix is rank deficient."); } if (X[0].length != B[0].length) { throw new IllegalArgumentException("B and X dimensions do not agree."); } // Copy right hand side int m = QR.length; int n = QR[0].length; int nx = B[0].length; // Compute Y = transpose(Q)*B double[][] Y = B; if (B != X) { Y = Math.clone(B); } for (int k = 0; k < n; k++) { for (int j = 0; j < nx; j++) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k] * Y[i][j]; } s = -s / QR[k][k]; for (int i = k; i < m; i++) { Y[i][j] += s * QR[i][k]; } } } // Solve R*X = Y; for (int k = n - 1; k >= 0; k--) { for (int j = 0; j < nx; j++) { X[k][j] = Y[k][j] / Rdiagonal[k]; } for (int i = 0; i < k; i++) { for (int j = 0; j < nx; j++) { Y[i][j] -= X[k][j] * QR[i][k]; } } } } /** * Rank-1 update of the QR decomposition for A = A + u * v. * Instead of a full decomposition from scratch in O(N3), * we can update the QR factorization in O(N2). * Note that u is modified during the update. */ public void update(double[] u, double[] v) { int m = QR.length; int n = QR[0].length; if (u.length != m || v.length != n) { throw new IllegalArgumentException("u.length = " + u.length + " v.length = " + v.length); } int k; for (k = m - 1; k >= 0; k--) { if (u[k] != 0.0) { break; } } if (k < 0) { return; } for (int i = k - 1; i >= 0; i--) { rotate(i, u[i], -u[i + 1]); if (u[i] == 0.0) { u[i] = Math.abs(u[i + 1]); } else if (Math.abs(u[i]) > Math.abs(u[i + 1])) { u[i] = Math.abs(u[i]) * Math.sqrt(1.0 + Math.sqr(u[i + 1] / u[i])); } else { u[i] = Math.abs(u[i + 1]) * Math.sqrt(1.0 + Math.sqr(u[i] / u[i + 1])); } } Rdiagonal[0] += u[0] * v[0]; for (int i = 1; i < n; i++) { QR[0][i] += u[0] * v[i]; } for (int i = 0; i < k; i++) { rotate(i, Rdiagonal[i], -QR[i + 1][i]); } for (int i = 0; i < n; i++) { if (Rdiagonal[i] == 0.0) { singular = true; } } } /* * Utility used by update for Jacobi rotation on rows i and i+1 of QR. * a and b are the paramters of the rotation: * cos θ = a / sqrt(a2+b2) * sin θ = b / sqrt(a2+b2) */ private void rotate(int i, double a, double b) { int n = QR[0].length; double c, fact, s, w, y; if (a == 0.0) { c = 0.0; s = (b >= 0.0 ? 1.0 : -1.0); } else if (Math.abs(a) > Math.abs(b)) { fact = b / a; c = Math.copySign(1.0 / Math.sqrt(1.0 + (fact * fact)), a); s = fact * c; } else { fact = a / b; s = Math.copySign(1.0 / Math.sqrt(1.0 + (fact * fact)), b); c = fact * s; } for (int j = i; j < n; j++) { y = i == j ? Rdiagonal[i] : QR[i][j]; w = QR[i + 1][j]; QR[i][j] = c * y - s * w; QR[i + 1][j] = s * y + c * w; } for (int j = 0; j < n; j++) { y = QR[i][j]; w = QR[i + 1][j]; QR[i][j] = c * y - s * w; QR[i + 1][j] = s * y + c * w; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy