All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.matrix.SingularValueDecomposition Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/
package smile.math.matrix;

import smile.math.Math;

/**
 * Singular Value Decomposition.
 * 

* For an m-by-n matrix A with m ≥ n, the singular value decomposition is * an m-by-n orthogonal matrix U, an n-by-n diagonal matrix Σ, and * an n-by-n orthogonal matrix V so that A = U*Σ*V'. *

* For m < n, only the first m columns of V are computed and Σ is m-by-m. *

* The singular values, σk = Σkk, are ordered * so that σ0 ≥ σ1 ≥ ... ≥ σn-1. *

* The singular value decompostion always exists. The matrix condition number * and the effective numerical rank can be computed from this decomposition. *

* SVD is a very powerful technique for dealing with sets of equations or matrices * that are either singular or else numerically very close to singular. In many * cases where Gaussian elimination and LU decomposition fail to give satisfactory * results, SVD will diagnose precisely what the problem is. SVD is also the * method of choice for solving most linear least squares problems. *

* Applications which employ the SVD include computing the pseudoinverse, least * squares fitting of data, matrix approximation, and determining the rank, * range and null space of a matrix. The SVD is also applied extensively to * the study of linear inverse problems, and is useful in the analysis of * regularization methods such as that of Tikhonov. It is widely used in * statistics where it is related to principal component analysis. Yet another * usage is latent semantic indexing in natural language text processing. * * @author Haifeng Li */ public class SingularValueDecomposition { /** * Arrays for internal storage of left singular vectors U. */ private double[][] U; /** * Arrays for internal storage of right singular vectors V. */ private double[][] V; /** * Array for internal storage of singular values. */ private double[] s; /** * Is this a full decomposition? */ private boolean full; /** * The number of rows. */ private int m; /** * The number of columns. */ private int n; /** * Threshold of estimated roundoff. */ private double tol; /** * Private constructor. Use factory method decompose() to get * the decomposition. */ private SingularValueDecomposition(double[][] U, double[][] V, double[] s) { this(U, V, s, true); } /** * Private constructor. Use factory method decompose() to get * the decomposition. */ private SingularValueDecomposition(double[][] U, double[][] V, double[] s, boolean full) { this.U = U; this.V = V; this.s = s; this.full = full; m = U.length; n = V.length; tol = 0.5 * Math.sqrt(U.length + V.length + 1.0) * s[0] * Math.EPSILON; } /** * Returns the left singular vectors */ public double[][] getU() { return U; } /** * Returns the right singular vectors */ public double[][] getV() { return V; } /** * Returns the one-dimensional array of singular values, ordered by * from largest to smallest. */ public double[] getSingularValues() { return s; } /** * Returns the diagonal matrix of singular values */ public double[][] getS() { double[][] S = new double[V.length][V.length]; for (int i = 0; i < s.length; i++) { S[i][i] = s[i]; } return S; } /** * Returns the L2 matrix norm. The largest singular value. */ public double norm() { return s[0]; } /** * Returns the effective numerical matrix rank. The number of nonnegligible * singular values. */ public int rank() { if (!full) { throw new IllegalStateException("This is not a FULL singular value decomposition."); } int r = 0; for (int i = 0; i < s.length; i++) { if (s[i] > tol) { r++; } } return r; } /** * Returns the dimension of null space. The number of negligible * singular values. */ public int nullity() { if (!full) { throw new IllegalStateException("This is not a FULL singular value decomposition."); } int r = 0; for (int i = 0; i < s.length; i++) { if (s[i] <= tol) { r++; } } return r; } /** * Returns the L2 norm condition number, which is max(S) / min(S). * A system of equations is considered to be well-conditioned if a small * change in the coefficient matrix or a small change in the right hand * side results in a small change in the solution vector. Otherwise, it is * called ill-conditioned. Condition number is defined as the product of * the norm of A and the norm of A-1. If we use the usual * L2 norm on vectors and the associated matrix norm, then the * condition number is the ratio of the largest singular value of matrix * A to the smallest. Condition number depends on the underlying norm. * However, regardless of the norm, it is always greater or equal to 1. * If it is close to one, the matrix is well conditioned. If the condition * number is large, then the matrix is said to be ill-conditioned. A matrix * that is not invertible has the condition number equal to infinity. */ public double condition() { if (!full) { throw new IllegalStateException("This is not a FULL singular value decomposition."); } return (s[0] <= 0.0 || s[n - 1] <= 0.0) ? Double.POSITIVE_INFINITY : s[0] / s[n - 1]; } /** * Returns a matrix of which columns give an orthonormal basis for the range space. */ public double[][] range() { if (!full) { throw new IllegalStateException("This is not a FULL singular value decomposition."); } int nr = 0; double[][] rnge = new double[m][rank()]; for (int j = 0; j < n; j++) { if (s[j] > tol) { for (int i = 0; i < m; i++) { rnge[i][nr] = U[i][j]; } nr++; } } return rnge; } /** * Returns a matrix of which columns give an orthonormal basis for the null space. */ public double[][] nullspace() { if (!full) { throw new IllegalStateException("This is not a FULL singular value decomposition."); } int nn = 0; double[][] nullsp = new double[n][nullity()]; for (int j = 0; j < n; j++) { if (s[j] <= tol) { for (int jj = 0; jj < n; jj++) { nullsp[jj][nn] = V[jj][j]; } nn++; } } return nullsp; } /** * Solve A * x = b using the pseudoinverse of A as obtained by SVD. */ public void solve(double[] b, double[] x) { if (!full) { throw new IllegalStateException("This is not a FULL singular value decomposition."); } if (b.length != m || x.length != n) { throw new IllegalArgumentException("Dimensions do not agree."); } double[] tmp = new double[n]; for (int j = 0; j < n; j++) { double r = 0.0; if (s[j] > tol) { for (int i = 0; i < m; i++) { r += U[i][j] * b[i]; } r /= s[j]; } tmp[j] = r; } for (int j = 0; j < n; j++) { double r = 0.0; for (int jj = 0; jj < n; jj++) { r += V[j][jj] * tmp[jj]; } x[j] = r; } } /** * Solve A * X = B using the pseudoinverse of A as obtained by SVD. */ public void solve(double[][] B, double[][] X) { if (!full) { throw new IllegalStateException("This is not a FULL singular value decomposition."); } if (B.length != n || X.length != n || B[0].length != X[0].length) { throw new IllegalArgumentException("Dimensions do not agree."); } double[] xx = new double[n]; int p = B[0].length; for (int j = 0; j < p; j++) { for (int i = 0; i < n; i++) { xx[i] = B[i][j]; } solve(xx, xx); for (int i = 0; i < n; i++) { X[i][j] = xx[i]; } } } private static class ATA implements IMatrix { IMatrix A; double[] buf; public ATA(IMatrix A) { this.A = A; if (A.nrows() >= A.ncols()) { buf = new double[A.nrows()]; } else { buf = new double[A.ncols()]; } } @Override public int nrows() { if (A.nrows() >= A.ncols()) { return A.ncols(); } else { return A.nrows(); } } @Override public int ncols() { return nrows(); } @Override public void ax(double[] x, double[] y) { if (A.nrows() >= A.ncols()) { A.ax(x, buf); A.atx(buf, y); } else { A.atx(x, buf); A.ax(buf, y); } } @Override public void atx(double[] x, double[] y) { ax(x, y); } @Override public void axpy(double[] x, double[] y) { throw new UnsupportedOperationException(); } @Override public void axpy(double[] x, double[] y, double b) { throw new UnsupportedOperationException(); } @Override public double get(int i, int j) { throw new UnsupportedOperationException(); } @Override public ATA set(int i, int j, double x) { throw new UnsupportedOperationException(); } @Override public void asolve(double[] b, double[] x) { throw new UnsupportedOperationException(); } @Override public void atxpy(double[] x, double[] y) { throw new UnsupportedOperationException(); } @Override public void atxpy(double[] x, double[] y, double b) { throw new UnsupportedOperationException(); } }; /** * Find k largest approximate singular triples of a matrix by the * Lanczos algorithm. * * @param A the matrix supporting matrix vector multiplication operation. * @param k the number of singular triples we wish to compute for the input matrix. * This number cannot exceed the size of A. */ public static SingularValueDecomposition decompose(IMatrix A, int k) { return decompose(A, k, 1.0E-6); } /** * Find k largest approximate singular triples of a matrix by the * Lanczos algorithm. * * @param A the matrix supporting matrix vector multiplication operation. * @param k the number of singular triples we wish to compute for the input matrix. * This number cannot exceed the size of A. * @param kappa relative accuracy of ritz values acceptable as singular values. */ public static SingularValueDecomposition decompose(IMatrix A, int k, double kappa) { ATA B = new ATA(A); EigenValueDecomposition eigen = EigenValueDecomposition.decompose(B, k, kappa); double[] s = eigen.getEigenValues(); for (int i = 0; i < s.length; i++) { s[i] = Math.sqrt(s[i]); } if (A.nrows() >= A.ncols()) { double[][] V = eigen.getEigenVectors(); double[] tmp = new double[A.nrows()]; double[] vi = new double[A.ncols()]; double[][] U = new double[A.nrows()][s.length]; for (int i = 0; i < s.length; i++) { for (int j = 0; j < A.ncols(); j++) { vi[j] = V[j][i]; } A.ax(vi, tmp); for (int j = 0; j < A.nrows(); j++) { U[j][i] = tmp[j] / s[i]; } } return new SingularValueDecomposition(U, V, s, false); } else { double[][] U = eigen.getEigenVectors(); double[] tmp = new double[A.ncols()]; double[] ui = new double[A.nrows()]; double[][] V = new double[A.ncols()][s.length]; for (int i = 0; i < s.length; i++) { for (int j = 0; j < A.nrows(); j++) { ui[j] = U[j][i]; } A.atx(ui, tmp); for (int j = 0; j < A.ncols(); j++) { V[j][i] = tmp[j] / s[i]; } } return new SingularValueDecomposition(U, V, s, false); } } /** * Returns the singular value decomposition. Note that the input matrix * A will hold U on output. * @param A rectangular matrix. Row number should be equal to or larger * than column number for current implementation. */ public static SingularValueDecomposition decompose(double[][] A) { int m = A.length; int n = A[0].length; boolean flag; int i, its, j, jj, k, l = 0, nm = 0; double anorm, c, f, g, h, s, scale, x, y, z; g = scale = anorm = 0.0; double[][] u = A; double[][] v = new double[n][n]; double[] w = new double[n]; double[] rv1 = new double[n]; for (i = 0; i < n; i++) { l = i + 2; rv1[i] = scale * g; g = s = scale = 0.0; if (i < m) { for (k = i; k < m; k++) { scale += Math.abs(u[k][i]); } if (scale != 0.0) { for (k = i; k < m; k++) { u[k][i] /= scale; s += u[k][i] * u[k][i]; } f = u[i][i]; g = -Math.copySign(Math.sqrt(s), f); h = f * g - s; u[i][i] = f - g; for (j = l - 1; j < n; j++) { for (s = 0.0, k = i; k < m; k++) { s += u[k][i] * u[k][j]; } f = s / h; for (k = i; k < m; k++) { u[k][j] += f * u[k][i]; } } for (k = i; k < m; k++) { u[k][i] *= scale; } } } w[i] = scale * g; g = s = scale = 0.0; if (i + 1 <= m && i + 1 != n) { for (k = l - 1; k < n; k++) { scale += Math.abs(u[i][k]); } if (scale != 0.0) { for (k = l - 1; k < n; k++) { u[i][k] /= scale; s += u[i][k] * u[i][k]; } f = u[i][l - 1]; g = -Math.copySign(Math.sqrt(s), f); h = f * g - s; u[i][l - 1] = f - g; for (k = l - 1; k < n; k++) { rv1[k] = u[i][k] / h; } for (j = l - 1; j < m; j++) { for (s = 0.0, k = l - 1; k < n; k++) { s += u[j][k] * u[i][k]; } for (k = l - 1; k < n; k++) { u[j][k] += s * rv1[k]; } } for (k = l - 1; k < n; k++) { u[i][k] *= scale; } } } anorm = Math.max(anorm, (Math.abs(w[i]) + Math.abs(rv1[i]))); } for (i = n - 1; i >= 0; i--) { if (i < n - 1) { if (g != 0.0) { for (j = l; j < n; j++) { v[j][i] = (u[i][j] / u[i][l]) / g; } for (j = l; j < n; j++) { for (s = 0.0, k = l; k < n; k++) { s += u[i][k] * v[k][j]; } for (k = l; k < n; k++) { v[k][j] += s * v[k][i]; } } } for (j = l; j < n; j++) { v[i][j] = v[j][i] = 0.0; } } v[i][i] = 1.0; g = rv1[i]; l = i; } for (i = Math.min(m, n) - 1; i >= 0; i--) { l = i + 1; g = w[i]; for (j = l; j < n; j++) { u[i][j] = 0.0; } if (g != 0.0) { g = 1.0 / g; for (j = l; j < n; j++) { for (s = 0.0, k = l; k < m; k++) { s += u[k][i] * u[k][j]; } f = (s / u[i][i]) * g; for (k = i; k < m; k++) { u[k][j] += f * u[k][i]; } } for (j = i; j < m; j++) { u[j][i] *= g; } } else { for (j = i; j < m; j++) { u[j][i] = 0.0; } } ++u[i][i]; } for (k = n - 1; k >= 0; k--) { for (its = 0; its < 30; its++) { flag = true; for (l = k; l >= 0; l--) { nm = l - 1; if (l == 0 || Math.abs(rv1[l]) <= Math.EPSILON * anorm) { flag = false; break; } if (Math.abs(w[nm]) <= Math.EPSILON * anorm) { break; } } if (flag) { c = 0.0; s = 1.0; for (i = l; i < k + 1; i++) { f = s * rv1[i]; rv1[i] = c * rv1[i]; if (Math.abs(f) <= Math.EPSILON * anorm) { break; } g = w[i]; h = Math.hypot(f, g); w[i] = h; h = 1.0 / h; c = g * h; s = -f * h; for (j = 0; j < m; j++) { y = u[j][nm]; z = u[j][i]; u[j][nm] = y * c + z * s; u[j][i] = z * c - y * s; } } } z = w[k]; if (l == k) { if (z < 0.0) { w[k] = -z; for (j = 0; j < n; j++) { v[j][k] = -v[j][k]; } } break; } if (its == 29) { throw new IllegalStateException("no convergence in 30 iterations"); } x = w[l]; nm = k - 1; y = w[nm]; g = rv1[nm]; h = rv1[k]; f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y); g = Math.hypot(f, 1.0); f = ((x - z) * (x + z) + h * ((y / (f + Math.copySign(g, f))) - h)) / x; c = s = 1.0; for (j = l; j <= nm; j++) { i = j + 1; g = rv1[i]; y = w[i]; h = s * g; g = c * g; z = Math.hypot(f, h); rv1[j] = z; c = f / z; s = h / z; f = x * c + g * s; g = g * c - x * s; h = y * s; y *= c; for (jj = 0; jj < n; jj++) { x = v[jj][j]; z = v[jj][i]; v[jj][j] = x * c + z * s; v[jj][i] = z * c - x * s; } z = Math.hypot(f, h); w[j] = z; if (z != 0.0) { z = 1.0 / z; c = f * z; s = h * z; } f = c * g + s * y; x = c * y - s * g; for (jj = 0; jj < m; jj++) { y = u[jj][j]; z = u[jj][i]; u[jj][j] = y * c + z * s; u[jj][i] = z * c - y * s; } } rv1[l] = 0.0; rv1[k] = f; w[k] = x; } } // order singular values int inc = 1; double sw; double[] su = new double[m], sv = new double[n]; do { inc *= 3; inc++; } while (inc <= n); do { inc /= 3; for (i = inc; i < n; i++) { sw = w[i]; for (k = 0; k < m; k++) { su[k] = u[k][i]; } for (k = 0; k < n; k++) { sv[k] = v[k][i]; } j = i; while (w[j - inc] < sw) { w[j] = w[j - inc]; for (k = 0; k < m; k++) { u[k][j] = u[k][j - inc]; } for (k = 0; k < n; k++) { v[k][j] = v[k][j - inc]; } j -= inc; if (j < inc) { break; } } w[j] = sw; for (k = 0; k < m; k++) { u[k][j] = su[k]; } for (k = 0; k < n; k++) { v[k][j] = sv[k]; } } } while (inc > 1); for (k = 0; k < n; k++) { s = 0; for (i = 0; i < m; i++) { if (u[i][k] < 0.) { s++; } } for (j = 0; j < n; j++) { if (v[j][k] < 0.) { s++; } } if (s > (m + n) / 2) { for (i = 0; i < m; i++) { u[i][k] = -u[i][k]; } for (j = 0; j < n; j++) { v[j][k] = -v[j][k]; } } } return new SingularValueDecomposition(u, v, w); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy