smile.math.matrix.SingularValueDecomposition Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.matrix;
import smile.math.Math;
/**
* Singular Value Decomposition.
*
* For an m-by-n matrix A with m ≥ n, the singular value decomposition is
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix Σ, and
* an n-by-n orthogonal matrix V so that A = U*Σ*V'.
*
* For m < n, only the first m columns of V are computed and Σ is m-by-m.
*
* The singular values, σk = Σkk, are ordered
* so that σ0 ≥ σ1 ≥ ... ≥ σn-1.
*
* The singular value decompostion always exists. The matrix condition number
* and the effective numerical rank can be computed from this decomposition.
*
* SVD is a very powerful technique for dealing with sets of equations or matrices
* that are either singular or else numerically very close to singular. In many
* cases where Gaussian elimination and LU decomposition fail to give satisfactory
* results, SVD will diagnose precisely what the problem is. SVD is also the
* method of choice for solving most linear least squares problems.
*
* Applications which employ the SVD include computing the pseudoinverse, least
* squares fitting of data, matrix approximation, and determining the rank,
* range and null space of a matrix. The SVD is also applied extensively to
* the study of linear inverse problems, and is useful in the analysis of
* regularization methods such as that of Tikhonov. It is widely used in
* statistics where it is related to principal component analysis. Yet another
* usage is latent semantic indexing in natural language text processing.
*
* @author Haifeng Li
*/
public class SingularValueDecomposition {
/**
* Arrays for internal storage of left singular vectors U.
*/
private double[][] U;
/**
* Arrays for internal storage of right singular vectors V.
*/
private double[][] V;
/**
* Array for internal storage of singular values.
*/
private double[] s;
/**
* Is this a full decomposition?
*/
private boolean full;
/**
* The number of rows.
*/
private int m;
/**
* The number of columns.
*/
private int n;
/**
* Threshold of estimated roundoff.
*/
private double tol;
/**
* Private constructor. Use factory method decompose() to get
* the decomposition.
*/
private SingularValueDecomposition(double[][] U, double[][] V, double[] s) {
this(U, V, s, true);
}
/**
* Private constructor. Use factory method decompose() to get
* the decomposition.
*/
private SingularValueDecomposition(double[][] U, double[][] V, double[] s, boolean full) {
this.U = U;
this.V = V;
this.s = s;
this.full = full;
m = U.length;
n = V.length;
tol = 0.5 * Math.sqrt(U.length + V.length + 1.0) * s[0] * Math.EPSILON;
}
/**
* Returns the left singular vectors
*/
public double[][] getU() {
return U;
}
/**
* Returns the right singular vectors
*/
public double[][] getV() {
return V;
}
/**
* Returns the one-dimensional array of singular values, ordered by
* from largest to smallest.
*/
public double[] getSingularValues() {
return s;
}
/**
* Returns the diagonal matrix of singular values
*/
public double[][] getS() {
double[][] S = new double[V.length][V.length];
for (int i = 0; i < s.length; i++) {
S[i][i] = s[i];
}
return S;
}
/**
* Returns the L2 matrix norm. The largest singular value.
*/
public double norm() {
return s[0];
}
/**
* Returns the effective numerical matrix rank. The number of nonnegligible
* singular values.
*/
public int rank() {
if (!full) {
throw new IllegalStateException("This is not a FULL singular value decomposition.");
}
int r = 0;
for (int i = 0; i < s.length; i++) {
if (s[i] > tol) {
r++;
}
}
return r;
}
/**
* Returns the dimension of null space. The number of negligible
* singular values.
*/
public int nullity() {
if (!full) {
throw new IllegalStateException("This is not a FULL singular value decomposition.");
}
int r = 0;
for (int i = 0; i < s.length; i++) {
if (s[i] <= tol) {
r++;
}
}
return r;
}
/**
* Returns the L2 norm condition number, which is max(S) / min(S).
* A system of equations is considered to be well-conditioned if a small
* change in the coefficient matrix or a small change in the right hand
* side results in a small change in the solution vector. Otherwise, it is
* called ill-conditioned. Condition number is defined as the product of
* the norm of A and the norm of A-1. If we use the usual
* L2 norm on vectors and the associated matrix norm, then the
* condition number is the ratio of the largest singular value of matrix
* A to the smallest. Condition number depends on the underlying norm.
* However, regardless of the norm, it is always greater or equal to 1.
* If it is close to one, the matrix is well conditioned. If the condition
* number is large, then the matrix is said to be ill-conditioned. A matrix
* that is not invertible has the condition number equal to infinity.
*/
public double condition() {
if (!full) {
throw new IllegalStateException("This is not a FULL singular value decomposition.");
}
return (s[0] <= 0.0 || s[n - 1] <= 0.0) ? Double.POSITIVE_INFINITY : s[0] / s[n - 1];
}
/**
* Returns a matrix of which columns give an orthonormal basis for the range space.
*/
public double[][] range() {
if (!full) {
throw new IllegalStateException("This is not a FULL singular value decomposition.");
}
int nr = 0;
double[][] rnge = new double[m][rank()];
for (int j = 0; j < n; j++) {
if (s[j] > tol) {
for (int i = 0; i < m; i++) {
rnge[i][nr] = U[i][j];
}
nr++;
}
}
return rnge;
}
/**
* Returns a matrix of which columns give an orthonormal basis for the null space.
*/
public double[][] nullspace() {
if (!full) {
throw new IllegalStateException("This is not a FULL singular value decomposition.");
}
int nn = 0;
double[][] nullsp = new double[n][nullity()];
for (int j = 0; j < n; j++) {
if (s[j] <= tol) {
for (int jj = 0; jj < n; jj++) {
nullsp[jj][nn] = V[jj][j];
}
nn++;
}
}
return nullsp;
}
/**
* Solve A * x = b using the pseudoinverse of A as obtained by SVD.
*/
public void solve(double[] b, double[] x) {
if (!full) {
throw new IllegalStateException("This is not a FULL singular value decomposition.");
}
if (b.length != m || x.length != n) {
throw new IllegalArgumentException("Dimensions do not agree.");
}
double[] tmp = new double[n];
for (int j = 0; j < n; j++) {
double r = 0.0;
if (s[j] > tol) {
for (int i = 0; i < m; i++) {
r += U[i][j] * b[i];
}
r /= s[j];
}
tmp[j] = r;
}
for (int j = 0; j < n; j++) {
double r = 0.0;
for (int jj = 0; jj < n; jj++) {
r += V[j][jj] * tmp[jj];
}
x[j] = r;
}
}
/**
* Solve A * X = B using the pseudoinverse of A as obtained by SVD.
*/
public void solve(double[][] B, double[][] X) {
if (!full) {
throw new IllegalStateException("This is not a FULL singular value decomposition.");
}
if (B.length != n || X.length != n || B[0].length != X[0].length) {
throw new IllegalArgumentException("Dimensions do not agree.");
}
double[] xx = new double[n];
int p = B[0].length;
for (int j = 0; j < p; j++) {
for (int i = 0; i < n; i++) {
xx[i] = B[i][j];
}
solve(xx, xx);
for (int i = 0; i < n; i++) {
X[i][j] = xx[i];
}
}
}
private static class ATA implements IMatrix {
IMatrix A;
double[] buf;
public ATA(IMatrix A) {
this.A = A;
if (A.nrows() >= A.ncols()) {
buf = new double[A.nrows()];
} else {
buf = new double[A.ncols()];
}
}
@Override
public int nrows() {
if (A.nrows() >= A.ncols()) {
return A.ncols();
} else {
return A.nrows();
}
}
@Override
public int ncols() {
return nrows();
}
@Override
public void ax(double[] x, double[] y) {
if (A.nrows() >= A.ncols()) {
A.ax(x, buf);
A.atx(buf, y);
} else {
A.atx(x, buf);
A.ax(buf, y);
}
}
@Override
public void atx(double[] x, double[] y) {
ax(x, y);
}
@Override
public void axpy(double[] x, double[] y) {
throw new UnsupportedOperationException();
}
@Override
public void axpy(double[] x, double[] y, double b) {
throw new UnsupportedOperationException();
}
@Override
public double get(int i, int j) {
throw new UnsupportedOperationException();
}
@Override
public ATA set(int i, int j, double x) {
throw new UnsupportedOperationException();
}
@Override
public void asolve(double[] b, double[] x) {
throw new UnsupportedOperationException();
}
@Override
public void atxpy(double[] x, double[] y) {
throw new UnsupportedOperationException();
}
@Override
public void atxpy(double[] x, double[] y, double b) {
throw new UnsupportedOperationException();
}
};
/**
* Find k largest approximate singular triples of a matrix by the
* Lanczos algorithm.
*
* @param A the matrix supporting matrix vector multiplication operation.
* @param k the number of singular triples we wish to compute for the input matrix.
* This number cannot exceed the size of A.
*/
public static SingularValueDecomposition decompose(IMatrix A, int k) {
return decompose(A, k, 1.0E-6);
}
/**
* Find k largest approximate singular triples of a matrix by the
* Lanczos algorithm.
*
* @param A the matrix supporting matrix vector multiplication operation.
* @param k the number of singular triples we wish to compute for the input matrix.
* This number cannot exceed the size of A.
* @param kappa relative accuracy of ritz values acceptable as singular values.
*/
public static SingularValueDecomposition decompose(IMatrix A, int k, double kappa) {
ATA B = new ATA(A);
EigenValueDecomposition eigen = EigenValueDecomposition.decompose(B, k, kappa);
double[] s = eigen.getEigenValues();
for (int i = 0; i < s.length; i++) {
s[i] = Math.sqrt(s[i]);
}
if (A.nrows() >= A.ncols()) {
double[][] V = eigen.getEigenVectors();
double[] tmp = new double[A.nrows()];
double[] vi = new double[A.ncols()];
double[][] U = new double[A.nrows()][s.length];
for (int i = 0; i < s.length; i++) {
for (int j = 0; j < A.ncols(); j++) {
vi[j] = V[j][i];
}
A.ax(vi, tmp);
for (int j = 0; j < A.nrows(); j++) {
U[j][i] = tmp[j] / s[i];
}
}
return new SingularValueDecomposition(U, V, s, false);
} else {
double[][] U = eigen.getEigenVectors();
double[] tmp = new double[A.ncols()];
double[] ui = new double[A.nrows()];
double[][] V = new double[A.ncols()][s.length];
for (int i = 0; i < s.length; i++) {
for (int j = 0; j < A.nrows(); j++) {
ui[j] = U[j][i];
}
A.atx(ui, tmp);
for (int j = 0; j < A.ncols(); j++) {
V[j][i] = tmp[j] / s[i];
}
}
return new SingularValueDecomposition(U, V, s, false);
}
}
/**
* Returns the singular value decomposition. Note that the input matrix
* A will hold U on output.
* @param A rectangular matrix. Row number should be equal to or larger
* than column number for current implementation.
*/
public static SingularValueDecomposition decompose(double[][] A) {
int m = A.length;
int n = A[0].length;
boolean flag;
int i, its, j, jj, k, l = 0, nm = 0;
double anorm, c, f, g, h, s, scale, x, y, z;
g = scale = anorm = 0.0;
double[][] u = A;
double[][] v = new double[n][n];
double[] w = new double[n];
double[] rv1 = new double[n];
for (i = 0; i < n; i++) {
l = i + 2;
rv1[i] = scale * g;
g = s = scale = 0.0;
if (i < m) {
for (k = i; k < m; k++) {
scale += Math.abs(u[k][i]);
}
if (scale != 0.0) {
for (k = i; k < m; k++) {
u[k][i] /= scale;
s += u[k][i] * u[k][i];
}
f = u[i][i];
g = -Math.copySign(Math.sqrt(s), f);
h = f * g - s;
u[i][i] = f - g;
for (j = l - 1; j < n; j++) {
for (s = 0.0, k = i; k < m; k++) {
s += u[k][i] * u[k][j];
}
f = s / h;
for (k = i; k < m; k++) {
u[k][j] += f * u[k][i];
}
}
for (k = i; k < m; k++) {
u[k][i] *= scale;
}
}
}
w[i] = scale * g;
g = s = scale = 0.0;
if (i + 1 <= m && i + 1 != n) {
for (k = l - 1; k < n; k++) {
scale += Math.abs(u[i][k]);
}
if (scale != 0.0) {
for (k = l - 1; k < n; k++) {
u[i][k] /= scale;
s += u[i][k] * u[i][k];
}
f = u[i][l - 1];
g = -Math.copySign(Math.sqrt(s), f);
h = f * g - s;
u[i][l - 1] = f - g;
for (k = l - 1; k < n; k++) {
rv1[k] = u[i][k] / h;
}
for (j = l - 1; j < m; j++) {
for (s = 0.0, k = l - 1; k < n; k++) {
s += u[j][k] * u[i][k];
}
for (k = l - 1; k < n; k++) {
u[j][k] += s * rv1[k];
}
}
for (k = l - 1; k < n; k++) {
u[i][k] *= scale;
}
}
}
anorm = Math.max(anorm, (Math.abs(w[i]) + Math.abs(rv1[i])));
}
for (i = n - 1; i >= 0; i--) {
if (i < n - 1) {
if (g != 0.0) {
for (j = l; j < n; j++) {
v[j][i] = (u[i][j] / u[i][l]) / g;
}
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < n; k++) {
s += u[i][k] * v[k][j];
}
for (k = l; k < n; k++) {
v[k][j] += s * v[k][i];
}
}
}
for (j = l; j < n; j++) {
v[i][j] = v[j][i] = 0.0;
}
}
v[i][i] = 1.0;
g = rv1[i];
l = i;
}
for (i = Math.min(m, n) - 1; i >= 0; i--) {
l = i + 1;
g = w[i];
for (j = l; j < n; j++) {
u[i][j] = 0.0;
}
if (g != 0.0) {
g = 1.0 / g;
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < m; k++) {
s += u[k][i] * u[k][j];
}
f = (s / u[i][i]) * g;
for (k = i; k < m; k++) {
u[k][j] += f * u[k][i];
}
}
for (j = i; j < m; j++) {
u[j][i] *= g;
}
} else {
for (j = i; j < m; j++) {
u[j][i] = 0.0;
}
}
++u[i][i];
}
for (k = n - 1; k >= 0; k--) {
for (its = 0; its < 30; its++) {
flag = true;
for (l = k; l >= 0; l--) {
nm = l - 1;
if (l == 0 || Math.abs(rv1[l]) <= Math.EPSILON * anorm) {
flag = false;
break;
}
if (Math.abs(w[nm]) <= Math.EPSILON * anorm) {
break;
}
}
if (flag) {
c = 0.0;
s = 1.0;
for (i = l; i < k + 1; i++) {
f = s * rv1[i];
rv1[i] = c * rv1[i];
if (Math.abs(f) <= Math.EPSILON * anorm) {
break;
}
g = w[i];
h = Math.hypot(f, g);
w[i] = h;
h = 1.0 / h;
c = g * h;
s = -f * h;
for (j = 0; j < m; j++) {
y = u[j][nm];
z = u[j][i];
u[j][nm] = y * c + z * s;
u[j][i] = z * c - y * s;
}
}
}
z = w[k];
if (l == k) {
if (z < 0.0) {
w[k] = -z;
for (j = 0; j < n; j++) {
v[j][k] = -v[j][k];
}
}
break;
}
if (its == 29) {
throw new IllegalStateException("no convergence in 30 iterations");
}
x = w[l];
nm = k - 1;
y = w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = Math.hypot(f, 1.0);
f = ((x - z) * (x + z) + h * ((y / (f + Math.copySign(g, f))) - h)) / x;
c = s = 1.0;
for (j = l; j <= nm; j++) {
i = j + 1;
g = rv1[i];
y = w[i];
h = s * g;
g = c * g;
z = Math.hypot(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y *= c;
for (jj = 0; jj < n; jj++) {
x = v[jj][j];
z = v[jj][i];
v[jj][j] = x * c + z * s;
v[jj][i] = z * c - x * s;
}
z = Math.hypot(f, h);
w[j] = z;
if (z != 0.0) {
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = c * g + s * y;
x = c * y - s * g;
for (jj = 0; jj < m; jj++) {
y = u[jj][j];
z = u[jj][i];
u[jj][j] = y * c + z * s;
u[jj][i] = z * c - y * s;
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = x;
}
}
// order singular values
int inc = 1;
double sw;
double[] su = new double[m], sv = new double[n];
do {
inc *= 3;
inc++;
} while (inc <= n);
do {
inc /= 3;
for (i = inc; i < n; i++) {
sw = w[i];
for (k = 0; k < m; k++) {
su[k] = u[k][i];
}
for (k = 0; k < n; k++) {
sv[k] = v[k][i];
}
j = i;
while (w[j - inc] < sw) {
w[j] = w[j - inc];
for (k = 0; k < m; k++) {
u[k][j] = u[k][j - inc];
}
for (k = 0; k < n; k++) {
v[k][j] = v[k][j - inc];
}
j -= inc;
if (j < inc) {
break;
}
}
w[j] = sw;
for (k = 0; k < m; k++) {
u[k][j] = su[k];
}
for (k = 0; k < n; k++) {
v[k][j] = sv[k];
}
}
} while (inc > 1);
for (k = 0; k < n; k++) {
s = 0;
for (i = 0; i < m; i++) {
if (u[i][k] < 0.) {
s++;
}
}
for (j = 0; j < n; j++) {
if (v[j][k] < 0.) {
s++;
}
}
if (s > (m + n) / 2) {
for (i = 0; i < m; i++) {
u[i][k] = -u[i][k];
}
for (j = 0; j < n; j++) {
v[j][k] = -v[j][k];
}
}
}
return new SingularValueDecomposition(u, v, w);
}
}