All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.matrix.SparseMatrix Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/
package smile.math.matrix;

import java.util.Arrays;
import smile.math.Math;

/**
 * A sparse matrix is a matrix populated primarily with zeros. Conceptually,
 * sparsity corresponds to systems which are loosely coupled. Huge sparse
 * matrices often appear when solving partial differential equations.
 * 

* Operations using standard dense matrix structures and algorithms are slow * and consume large amounts of memory when applied to large sparse matrices. * Indeed, some very large sparse matrices are infeasible to manipulate with * the standard dense algorithms. Sparse data is by nature easily compressed, * and this compression almost always results in significantly less computer * data storage usage. *

* This class employs Harwell-Boeing column-compressed sparse matrix format. * Nonzero values are stored in an array (top-to-bottom, then left-to-right-bottom). * The row indices corresponding to the values are also stored. Besides, a list * of pointers are indexes where each column starts. This format is efficient * for arithmetic operations, column slicing, and matrix-vector products. * One typically uses SparseDataset for construction of SparseMatrix. * * @author Haifeng Li */ public class SparseMatrix implements IMatrix { /** * The number of rows. */ private int nrows; /** * The number of columns. */ private int ncols; /** * The index of the start of columns. */ private int[] colIndex; /** * The row indices of nonzero values. */ private int[] rowIndex; /** * The array of nonzero values stored column by column. */ private double[] x; /** * Constructor. * @param nrows the number of rows in the matrix. * @param ncols the number of columns in the matrix. * @param size the number of nonzero entries in the matrix. */ private SparseMatrix(int nrows, int ncols, int nvals) { this.nrows = nrows; this.ncols = ncols; rowIndex = new int[nvals]; colIndex = new int[ncols + 1]; x = new double[nvals]; } /** * Constructor. * @param nrows the number of rows in the matrix. * @param ncols the number of columns in the matrix. * @param rowIndex the row indices of nonzero values. * @param colIndex the index of the start of columns. * @param x the array of nonzero values stored column by column. */ public SparseMatrix(int nrows, int ncols, double[] x, int[] rowIndex, int[] colIndex) { this.nrows = nrows; this.ncols = ncols; this.rowIndex = rowIndex; this.colIndex = colIndex; this.x = x; } /** * Constructor. * @param D a dense matrix to converted into sparse matrix format. */ public SparseMatrix(double[][] D) { this(D, 100 * Math.EPSILON); } /** * Constructor. * @param D a dense matrix to converted into sparse matrix format. * @param tol the tolerance to regard a value as zero if |x| < tol. */ public SparseMatrix(double[][] D, double tol) { nrows = D.length; ncols = D[0].length; int n = 0; // number of non-zero elements for (int i = 0; i < nrows; i++) { for (int j = 0; j < ncols; j++) { if (Math.abs(D[i][j]) >= tol) { n++; } } } x = new double[n]; rowIndex = new int[n]; colIndex = new int[ncols + 1]; colIndex[ncols] = n; n = 0; for (int j = 0; j < ncols; j++) { colIndex[j] = n; for (int i = 0; i < nrows; i++) { if (Math.abs(D[i][j]) >= tol) { rowIndex[n] = i; x[n] = D[i][j]; n++; } } } } @Override public int nrows() { return nrows; } @Override public int ncols() { return ncols; } /** * Returns the number of nonzero values. */ public int size() { return colIndex[ncols]; } /** * Returns all nonzero values. * @return all nonzero values */ public double[] values() { return x; } @Override public double get(int i, int j) { if (i < 0 || i >= nrows || j < 0 || j >= ncols) { throw new IllegalArgumentException("Invalid index: i = " + i + " j = " + j); } for (int k = colIndex[j]; k < colIndex[j + 1]; k++) { if (rowIndex[k] == i) { return x[k]; } } return 0.0; } @Override public SparseMatrix set(int i, int j, double x) { if (i < 0 || i >= nrows || j < 0 || j >= ncols) { throw new IllegalArgumentException("i = " + i + " j = " + j); } for (int k = colIndex[j]; k < colIndex[j + 1]; k++) { if (rowIndex[k] == i) { this.x[k] = x; return this; } } throw new IllegalArgumentException("SparseMatrix does not support changing zero values to non-zeros."); } @Override public void ax(double[] x, double[] y) { Arrays.fill(y, 0.0); for (int j = 0; j < ncols; j++) { for (int i = colIndex[j]; i < colIndex[j + 1]; i++) { y[rowIndex[i]] += this.x[i] * x[j]; } } } @Override public void axpy(double[] x, double[] y) { for (int j = 0; j < ncols; j++) { for (int i = colIndex[j]; i < colIndex[j + 1]; i++) { y[rowIndex[i]] += this.x[i] * x[j]; } } } @Override public void axpy(double[] x, double[] y, double b) { for (int i = 0; i < y.length; i++) { y[i] *= b; } for (int j = 0; j < ncols; j++) { for (int i = colIndex[j]; i < colIndex[j + 1]; i++) { y[rowIndex[i]] += this.x[i] * x[j]; } } } @Override public void atx(double[] x, double[] y) { Arrays.fill(y, 0.0); for (int i = 0; i < ncols; i++) { for (int j = colIndex[i]; j < colIndex[i + 1]; j++) { y[i] += this.x[j] * x[rowIndex[j]]; } } } @Override public void atxpy(double[] x, double[] y) { for (int i = 0; i < ncols; i++) { for (int j = colIndex[i]; j < colIndex[i + 1]; j++) { y[i] += this.x[j] * x[rowIndex[j]]; } } } @Override public void atxpy(double[] x, double[] y, double b) { for (int i = 0; i < ncols; i++) { y[i] *= b; for (int j = colIndex[i]; j < colIndex[i + 1]; j++) { y[i] += this.x[j] * x[rowIndex[j]]; } } } /** * Returns the matrix transpose. */ public SparseMatrix transpose() { int m = nrows, n = ncols; SparseMatrix at = new SparseMatrix(n, m, x.length); int[] count = new int[m]; for (int i = 0; i < n; i++) { for (int j = colIndex[i]; j < colIndex[i + 1]; j++) { int k = rowIndex[j]; count[k]++; } } for (int j = 0; j < m; j++) { at.colIndex[j + 1] = at.colIndex[j] + count[j]; } Arrays.fill(count, 0); for (int i = 0; i < n; i++) { for (int j = colIndex[i]; j < colIndex[i + 1]; j++) { int k = rowIndex[j]; int index = at.colIndex[k] + count[k]; at.rowIndex[index] = i; at.x[index] = x[j]; count[k]++; } } return at; } /** * Returns the matrix multiplication C = A * B. */ public SparseMatrix times(SparseMatrix B) { if (ncols != B.nrows) { throw new IllegalArgumentException(String.format("Matrix dimensions do not match for matrix multiplication: %d x %d vs %d x %d", nrows(), ncols(), B.nrows(), B.ncols())); } int m = nrows; int anz = size(); int n = B.ncols; int[] Bp = B.colIndex; int[] Bi = B.rowIndex; double[] Bx = B.x; int bnz = Bp[n]; int[] w = new int[m]; double[] abj = new double[m]; int nzmax = Math.max(anz + bnz, m); SparseMatrix C = new SparseMatrix(m, n, nzmax); int[] Cp = C.colIndex; int[] Ci = C.rowIndex; double[] Cx = C.x; int nz = 0; for (int j = 0; j < n; j++) { if (nz + m > nzmax) { nzmax = 2 * nzmax + m; double[] Cx2 = new double[nzmax]; int[] Ci2 = new int[nzmax]; System.arraycopy(Ci, 0, Ci2, 0, nz); System.arraycopy(Cx, 0, Cx2, 0, nz); Ci = Ci2; Cx = Cx2; C.rowIndex = Ci; C.x = Cx; } // column j of C starts here Cp[j] = nz; for (int p = Bp[j]; p < Bp[j + 1]; p++) { nz = scatter(this, Bi[p], Bx[p], w, abj, j + 1, C, nz); } for (int p = Cp[j]; p < nz; p++) { Cx[p] = abj[Ci[p]]; } } // finalize the last column of C Cp[n] = nz; return C; } /** * x = x + beta * A(:,j), where x is a dense vector and A(:,j) is sparse. */ private static int scatter(SparseMatrix A, int j, double beta, int[] w, double[] x, int mark, SparseMatrix C, int nz) { int[] Ap = A.colIndex; int[] Ai = A.rowIndex; double[] Ax = A.x; int[] Ci = C.rowIndex; for (int p = Ap[j]; p < Ap[j + 1]; p++) { int i = Ai[p]; // A(i,j) is nonzero if (w[i] < mark) { w[i] = mark; // i is new entry in column j Ci[nz++] = i; // add i to pattern of C(:,j) x[i] = beta * Ax[p]; // x(i) = beta*A(i,j) } else { x[i] += beta * Ax[p]; // i exists in C(:,j) already } } return nz; } /** * Returns A * AT. */ public static SparseMatrix AAT(SparseMatrix A, SparseMatrix AT) { if (A.ncols != AT.nrows) { throw new IllegalArgumentException(String.format("Matrix dimensions do not match for matrix multiplication: %d x %d vs %d x %d", A.nrows(), A.ncols(), AT.nrows(), AT.ncols())); } int m = AT.ncols; int[] done = new int[m]; for (int i = 0; i < m; i++) { done[i] = -1; } // First pass determines the number of nonzeros. int nvals = 0; // Outer loop over columns of A' in AA' for (int j = 0; j < m; j++) { for (int i = AT.colIndex[j]; i < AT.colIndex[j + 1]; i++) { int k = AT.rowIndex[i]; for (int l = A.colIndex[k]; l < A.colIndex[k + 1]; l++) { int h = A.rowIndex[l]; // Test if contribution already included. if (done[h] != j) { done[h] = j; nvals++; } } } } SparseMatrix aat = new SparseMatrix(m, m, nvals); nvals = 0; for (int i = 0; i < m; i++) { done[i] = -1; } // Second pass determines columns of adat. Code is identical to first // pass except colIndex and rowIndex get assigned at appropriate places. for (int j = 0; j < m; j++) { aat.colIndex[j] = nvals; for (int i = AT.colIndex[j]; i < AT.colIndex[j + 1]; i++) { int k = AT.rowIndex[i]; for (int l = A.colIndex[k]; l < A.colIndex[k + 1]; l++) { int h = A.rowIndex[l]; if (done[h] != j) { done[h] = j; aat.rowIndex[nvals] = h; nvals++; } } } } // Set last value. aat.colIndex[m] = nvals; // Sort columns. for (int j = 0; j < m; j++) { if (aat.colIndex[j + 1] - aat.colIndex[j] > 1) { Arrays.sort(aat.rowIndex, aat.colIndex[j], aat.colIndex[j + 1]); } } double[] temp = new double[m]; for (int i = 0; i < m; i++) { for (int j = AT.colIndex[i]; j < AT.colIndex[i + 1]; j++) { int k = AT.rowIndex[j]; for (int l = A.colIndex[k]; l < A.colIndex[k + 1]; l++) { int h = A.rowIndex[l]; temp[h] += AT.x[j] * A.x[l]; } } for (int j = aat.colIndex[i]; j < aat.colIndex[i + 1]; j++) { int k = aat.rowIndex[j]; aat.x[j] = temp[k]; temp[k] = 0.0; } } return aat; } /** * Returns the largest eigen pair of matrix with the power iteration * under the assumptions A has an eigenvalue that is strictly greater * in magnitude than its other its other eigenvalues and the starting * vectorhas a nonzero component in the direction of an eigenvector * associated with the dominant eigenvalue. * @param v on input, it is the non-zero initial guess of the eigen vector. * On output, it is the eigen vector corresponding largest eigen value. * @return the largest eigen value. */ public double eigen(double[] v) { if (nrows != ncols) { throw new UnsupportedOperationException("The matrix is not square."); } return EigenValueDecomposition.eigen(this, v); } /** * Returns the k largest eigen pairs. Only works for symmetric matrix. */ public EigenValueDecomposition eigen(int k) { if (nrows != ncols) { throw new UnsupportedOperationException("The matrix is not square."); } return EigenValueDecomposition.decompose(this, k); } @Override public void asolve(double[] b, double[] x) { for (int i = 0; i < nrows; i++) { double diag = 0.0; for (int j = colIndex[i]; j < colIndex[i + 1]; j++) { if (rowIndex[j] == i) { diag = this.x[j]; break; } } x[i] = diag != 0.0 ? b[i] / diag : b[i]; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy