smile.math.matrix.SparseMatrix Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.matrix;
import java.util.Arrays;
import smile.math.Math;
/**
* A sparse matrix is a matrix populated primarily with zeros. Conceptually,
* sparsity corresponds to systems which are loosely coupled. Huge sparse
* matrices often appear when solving partial differential equations.
*
* Operations using standard dense matrix structures and algorithms are slow
* and consume large amounts of memory when applied to large sparse matrices.
* Indeed, some very large sparse matrices are infeasible to manipulate with
* the standard dense algorithms. Sparse data is by nature easily compressed,
* and this compression almost always results in significantly less computer
* data storage usage.
*
* This class employs Harwell-Boeing column-compressed sparse matrix format.
* Nonzero values are stored in an array (top-to-bottom, then left-to-right-bottom).
* The row indices corresponding to the values are also stored. Besides, a list
* of pointers are indexes where each column starts. This format is efficient
* for arithmetic operations, column slicing, and matrix-vector products.
* One typically uses SparseDataset for construction of SparseMatrix.
*
* @author Haifeng Li
*/
public class SparseMatrix implements IMatrix {
/**
* The number of rows.
*/
private int nrows;
/**
* The number of columns.
*/
private int ncols;
/**
* The index of the start of columns.
*/
private int[] colIndex;
/**
* The row indices of nonzero values.
*/
private int[] rowIndex;
/**
* The array of nonzero values stored column by column.
*/
private double[] x;
/**
* Constructor.
* @param nrows the number of rows in the matrix.
* @param ncols the number of columns in the matrix.
* @param size the number of nonzero entries in the matrix.
*/
private SparseMatrix(int nrows, int ncols, int nvals) {
this.nrows = nrows;
this.ncols = ncols;
rowIndex = new int[nvals];
colIndex = new int[ncols + 1];
x = new double[nvals];
}
/**
* Constructor.
* @param nrows the number of rows in the matrix.
* @param ncols the number of columns in the matrix.
* @param rowIndex the row indices of nonzero values.
* @param colIndex the index of the start of columns.
* @param x the array of nonzero values stored column by column.
*/
public SparseMatrix(int nrows, int ncols, double[] x, int[] rowIndex, int[] colIndex) {
this.nrows = nrows;
this.ncols = ncols;
this.rowIndex = rowIndex;
this.colIndex = colIndex;
this.x = x;
}
/**
* Constructor.
* @param D a dense matrix to converted into sparse matrix format.
*/
public SparseMatrix(double[][] D) {
this(D, 100 * Math.EPSILON);
}
/**
* Constructor.
* @param D a dense matrix to converted into sparse matrix format.
* @param tol the tolerance to regard a value as zero if |x| < tol.
*/
public SparseMatrix(double[][] D, double tol) {
nrows = D.length;
ncols = D[0].length;
int n = 0; // number of non-zero elements
for (int i = 0; i < nrows; i++) {
for (int j = 0; j < ncols; j++) {
if (Math.abs(D[i][j]) >= tol) {
n++;
}
}
}
x = new double[n];
rowIndex = new int[n];
colIndex = new int[ncols + 1];
colIndex[ncols] = n;
n = 0;
for (int j = 0; j < ncols; j++) {
colIndex[j] = n;
for (int i = 0; i < nrows; i++) {
if (Math.abs(D[i][j]) >= tol) {
rowIndex[n] = i;
x[n] = D[i][j];
n++;
}
}
}
}
@Override
public int nrows() {
return nrows;
}
@Override
public int ncols() {
return ncols;
}
/**
* Returns the number of nonzero values.
*/
public int size() {
return colIndex[ncols];
}
/**
* Returns all nonzero values.
* @return all nonzero values
*/
public double[] values() {
return x;
}
@Override
public double get(int i, int j) {
if (i < 0 || i >= nrows || j < 0 || j >= ncols) {
throw new IllegalArgumentException("Invalid index: i = " + i + " j = " + j);
}
for (int k = colIndex[j]; k < colIndex[j + 1]; k++) {
if (rowIndex[k] == i) {
return x[k];
}
}
return 0.0;
}
@Override
public SparseMatrix set(int i, int j, double x) {
if (i < 0 || i >= nrows || j < 0 || j >= ncols) {
throw new IllegalArgumentException("i = " + i + " j = " + j);
}
for (int k = colIndex[j]; k < colIndex[j + 1]; k++) {
if (rowIndex[k] == i) {
this.x[k] = x;
return this;
}
}
throw new IllegalArgumentException("SparseMatrix does not support changing zero values to non-zeros.");
}
@Override
public void ax(double[] x, double[] y) {
Arrays.fill(y, 0.0);
for (int j = 0; j < ncols; j++) {
for (int i = colIndex[j]; i < colIndex[j + 1]; i++) {
y[rowIndex[i]] += this.x[i] * x[j];
}
}
}
@Override
public void axpy(double[] x, double[] y) {
for (int j = 0; j < ncols; j++) {
for (int i = colIndex[j]; i < colIndex[j + 1]; i++) {
y[rowIndex[i]] += this.x[i] * x[j];
}
}
}
@Override
public void axpy(double[] x, double[] y, double b) {
for (int i = 0; i < y.length; i++) {
y[i] *= b;
}
for (int j = 0; j < ncols; j++) {
for (int i = colIndex[j]; i < colIndex[j + 1]; i++) {
y[rowIndex[i]] += this.x[i] * x[j];
}
}
}
@Override
public void atx(double[] x, double[] y) {
Arrays.fill(y, 0.0);
for (int i = 0; i < ncols; i++) {
for (int j = colIndex[i]; j < colIndex[i + 1]; j++) {
y[i] += this.x[j] * x[rowIndex[j]];
}
}
}
@Override
public void atxpy(double[] x, double[] y) {
for (int i = 0; i < ncols; i++) {
for (int j = colIndex[i]; j < colIndex[i + 1]; j++) {
y[i] += this.x[j] * x[rowIndex[j]];
}
}
}
@Override
public void atxpy(double[] x, double[] y, double b) {
for (int i = 0; i < ncols; i++) {
y[i] *= b;
for (int j = colIndex[i]; j < colIndex[i + 1]; j++) {
y[i] += this.x[j] * x[rowIndex[j]];
}
}
}
/**
* Returns the matrix transpose.
*/
public SparseMatrix transpose() {
int m = nrows, n = ncols;
SparseMatrix at = new SparseMatrix(n, m, x.length);
int[] count = new int[m];
for (int i = 0; i < n; i++) {
for (int j = colIndex[i]; j < colIndex[i + 1]; j++) {
int k = rowIndex[j];
count[k]++;
}
}
for (int j = 0; j < m; j++) {
at.colIndex[j + 1] = at.colIndex[j] + count[j];
}
Arrays.fill(count, 0);
for (int i = 0; i < n; i++) {
for (int j = colIndex[i]; j < colIndex[i + 1]; j++) {
int k = rowIndex[j];
int index = at.colIndex[k] + count[k];
at.rowIndex[index] = i;
at.x[index] = x[j];
count[k]++;
}
}
return at;
}
/**
* Returns the matrix multiplication C = A * B.
*/
public SparseMatrix times(SparseMatrix B) {
if (ncols != B.nrows) {
throw new IllegalArgumentException(String.format("Matrix dimensions do not match for matrix multiplication: %d x %d vs %d x %d", nrows(), ncols(), B.nrows(), B.ncols()));
}
int m = nrows;
int anz = size();
int n = B.ncols;
int[] Bp = B.colIndex;
int[] Bi = B.rowIndex;
double[] Bx = B.x;
int bnz = Bp[n];
int[] w = new int[m];
double[] abj = new double[m];
int nzmax = Math.max(anz + bnz, m);
SparseMatrix C = new SparseMatrix(m, n, nzmax);
int[] Cp = C.colIndex;
int[] Ci = C.rowIndex;
double[] Cx = C.x;
int nz = 0;
for (int j = 0; j < n; j++) {
if (nz + m > nzmax) {
nzmax = 2 * nzmax + m;
double[] Cx2 = new double[nzmax];
int[] Ci2 = new int[nzmax];
System.arraycopy(Ci, 0, Ci2, 0, nz);
System.arraycopy(Cx, 0, Cx2, 0, nz);
Ci = Ci2;
Cx = Cx2;
C.rowIndex = Ci;
C.x = Cx;
}
// column j of C starts here
Cp[j] = nz;
for (int p = Bp[j]; p < Bp[j + 1]; p++) {
nz = scatter(this, Bi[p], Bx[p], w, abj, j + 1, C, nz);
}
for (int p = Cp[j]; p < nz; p++) {
Cx[p] = abj[Ci[p]];
}
}
// finalize the last column of C
Cp[n] = nz;
return C;
}
/**
* x = x + beta * A(:,j), where x is a dense vector and A(:,j) is sparse.
*/
private static int scatter(SparseMatrix A, int j, double beta, int[] w, double[] x, int mark, SparseMatrix C, int nz) {
int[] Ap = A.colIndex;
int[] Ai = A.rowIndex;
double[] Ax = A.x;
int[] Ci = C.rowIndex;
for (int p = Ap[j]; p < Ap[j + 1]; p++) {
int i = Ai[p]; // A(i,j) is nonzero
if (w[i] < mark) {
w[i] = mark; // i is new entry in column j
Ci[nz++] = i; // add i to pattern of C(:,j)
x[i] = beta * Ax[p]; // x(i) = beta*A(i,j)
} else {
x[i] += beta * Ax[p]; // i exists in C(:,j) already
}
}
return nz;
}
/**
* Returns A * AT.
*/
public static SparseMatrix AAT(SparseMatrix A, SparseMatrix AT) {
if (A.ncols != AT.nrows) {
throw new IllegalArgumentException(String.format("Matrix dimensions do not match for matrix multiplication: %d x %d vs %d x %d", A.nrows(), A.ncols(), AT.nrows(), AT.ncols()));
}
int m = AT.ncols;
int[] done = new int[m];
for (int i = 0; i < m; i++) {
done[i] = -1;
}
// First pass determines the number of nonzeros.
int nvals = 0;
// Outer loop over columns of A' in AA'
for (int j = 0; j < m; j++) {
for (int i = AT.colIndex[j]; i < AT.colIndex[j + 1]; i++) {
int k = AT.rowIndex[i];
for (int l = A.colIndex[k]; l < A.colIndex[k + 1]; l++) {
int h = A.rowIndex[l];
// Test if contribution already included.
if (done[h] != j) {
done[h] = j;
nvals++;
}
}
}
}
SparseMatrix aat = new SparseMatrix(m, m, nvals);
nvals = 0;
for (int i = 0; i < m; i++) {
done[i] = -1;
}
// Second pass determines columns of adat. Code is identical to first
// pass except colIndex and rowIndex get assigned at appropriate places.
for (int j = 0; j < m; j++) {
aat.colIndex[j] = nvals;
for (int i = AT.colIndex[j]; i < AT.colIndex[j + 1]; i++) {
int k = AT.rowIndex[i];
for (int l = A.colIndex[k]; l < A.colIndex[k + 1]; l++) {
int h = A.rowIndex[l];
if (done[h] != j) {
done[h] = j;
aat.rowIndex[nvals] = h;
nvals++;
}
}
}
}
// Set last value.
aat.colIndex[m] = nvals;
// Sort columns.
for (int j = 0; j < m; j++) {
if (aat.colIndex[j + 1] - aat.colIndex[j] > 1) {
Arrays.sort(aat.rowIndex, aat.colIndex[j], aat.colIndex[j + 1]);
}
}
double[] temp = new double[m];
for (int i = 0; i < m; i++) {
for (int j = AT.colIndex[i]; j < AT.colIndex[i + 1]; j++) {
int k = AT.rowIndex[j];
for (int l = A.colIndex[k]; l < A.colIndex[k + 1]; l++) {
int h = A.rowIndex[l];
temp[h] += AT.x[j] * A.x[l];
}
}
for (int j = aat.colIndex[i]; j < aat.colIndex[i + 1]; j++) {
int k = aat.rowIndex[j];
aat.x[j] = temp[k];
temp[k] = 0.0;
}
}
return aat;
}
/**
* Returns the largest eigen pair of matrix with the power iteration
* under the assumptions A has an eigenvalue that is strictly greater
* in magnitude than its other its other eigenvalues and the starting
* vectorhas a nonzero component in the direction of an eigenvector
* associated with the dominant eigenvalue.
* @param v on input, it is the non-zero initial guess of the eigen vector.
* On output, it is the eigen vector corresponding largest eigen value.
* @return the largest eigen value.
*/
public double eigen(double[] v) {
if (nrows != ncols) {
throw new UnsupportedOperationException("The matrix is not square.");
}
return EigenValueDecomposition.eigen(this, v);
}
/**
* Returns the k largest eigen pairs. Only works for symmetric matrix.
*/
public EigenValueDecomposition eigen(int k) {
if (nrows != ncols) {
throw new UnsupportedOperationException("The matrix is not square.");
}
return EigenValueDecomposition.decompose(this, k);
}
@Override
public void asolve(double[] b, double[] x) {
for (int i = 0; i < nrows; i++) {
double diag = 0.0;
for (int j = colIndex[i]; j < colIndex[i + 1]; j++) {
if (rowIndex[j] == i) {
diag = this.x[j];
break;
}
}
x[i] = diag != 0.0 ? b[i] / diag : b[i];
}
}
}