smile.math.special.Erf Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.special;
import smile.math.Math;
/**
* The error function (also called the Gauss error function) is a special
* function of sigmoid shape which occurs in probability, statistics, materials
* science, and partial differential equations. It is defined as:
*
* erf(x) = ∫0x e-t2dt
*
* The complementary error function, denoted erfc, is defined as erfc(x) = 1 - erf(x).
* The error function and complementary error function are special cases of the
* incomplete gamma function.
*
* @author Haifeng Li
*/
public class Erf {
private static final double[] cof = {
-1.3026537197817094, 6.4196979235649026e-1,
1.9476473204185836e-2, -9.561514786808631e-3, -9.46595344482036e-4,
3.66839497852761e-4, 4.2523324806907e-5, -2.0278578112534e-5,
-1.624290004647e-6, 1.303655835580e-6, 1.5626441722e-8, -8.5238095915e-8,
6.529054439e-9, 5.059343495e-9, -9.91364156e-10, -2.27365122e-10,
9.6467911e-11, 2.394038e-12, -6.886027e-12, 8.94487e-13, 3.13092e-13,
-1.12708e-13, 3.81e-16, 7.106e-15, -1.523e-15, -9.4e-17, 1.21e-16, -2.8e-17
};
/**
* The Gauss error function.
*/
public static double erf(double x) {
if (x >= 0.) {
return 1.0 - erfccheb(x);
} else {
return erfccheb(-x) - 1.0;
}
}
/**
* The complementary error function.
*/
public static double erfc(double x) {
if (x >= 0.) {
return erfccheb(x);
} else {
return 2.0 - erfccheb(-x);
}
}
/**
* The complementary error function with fractional error everywhere less
* than 1.2 × 10-7. This concise routine is faster than erfc.
*/
public static double erfcc(double x) {
double z = Math.abs(x);
double t = 2.0 / (2.0 + z);
double ans = t * Math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (0.37409196 + t * (0.09678418 +
t * (-0.18628806 + t * (0.27886807 + t * (-1.13520398 + t * (1.48851587 +
t * (-0.82215223 + t * 0.17087277)))))))));
return (x >= 0.0 ? ans : 2.0 - ans);
}
private static double erfccheb(double z) {
double t, ty, tmp, d = 0., dd = 0.;
if (z < 0.) {
throw new IllegalArgumentException("erfccheb requires nonnegative argument");
}
t = 2. / (2. + z);
ty = 4. * t - 2.;
for (int j = cof.length - 1; j > 0; j--) {
tmp = d;
d = ty * d - dd + cof[j];
dd = tmp;
}
return t * Math.exp(-z * z + 0.5 * (cof[0] + ty * d) - dd);
}
/**
* The inverse complementary error function.
*/
public static double inverfc(double p) {
double x, err, t, pp;
if (p >= 2.0) {
return -100.;
}
if (p <= 0.0) {
return 100.;
}
pp = (p < 1.0) ? p : 2. - p;
t = Math.sqrt(-2. * Math.log(pp / 2.));
x = -0.70711 * ((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t);
for (int j = 0; j < 2; j++) {
err = erfc(x) - pp;
x += err / (1.12837916709551257 * Math.exp(-x * x) - x * err);
}
return (p < 1.0 ? x : -x);
}
/**
* The inverse error function.
*/
public static double inverf(double p) {
return inverfc(1. - p);
}
}