smile.projection.RandomProjection Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.projection;
import smile.math.Math;
import smile.stat.distribution.GaussianDistribution;
/**
* Random projection is a promising dimensionality reduction technique for
* learning mixtures of Gaussians. According to Johnson-Lindenstrauss lemma,
* any n data points in high dimension can be mapped down to
* d = O(log n / ε2) dimension without
* distorting their pairwise distances by more than (1 + ε). However,
* this reduced dimension is still far too high. Let ε = 1, we need
* 2d data points, and this usually exceeds n by many orders of magnitude.
*
* Fortunately, we can reduce the dimension of the data far more drastically for
* the particular case of mixtures of Gaussians. In fact, we can map the data
* into just d = O(log k) dimensions, where k is the number of Gaussians. Therefore,
* the amount of data we will need is only polynomial in k. Note that this projected
* dimension is independent of the number of data points and of their original
* dimension. Experiments show that a value of log k works nicely.
*
* Besides, even if the original clusters are highly eccentric (that is, far from
* spherical), random projection will make them more spherical. Note that eccentric
* clusters are problematic for the EM algorithm because intermediate covariance
* matrices may become singular or close to singular. Note that for high enough
* dimension, almost the entire Gaussian distribution lies in a thin shell.
*
*
References
*
* - S. Dasgupta. Experiments with random projection. UAI, 2000.
* - D. Achlioptas. Database-friendly random projections. 2001.
* - Chinmay Hegde, Michael Wakin, and Richard Baraniuk. Random projections for manifold learning. NIPS, 2007.
*
*
* @author Haifeng Li
*/
public class RandomProjection implements Projection {
/**
* Probability distribution to generate random projection.
*/
private static final double[] prob = {1.0 / 6, 2.0 / 3, 1.0 / 6};
/**
* The dimension of feature space.
*/
private int p;
/**
* The dimension of input space.
*/
private int n;
/**
* Projection matrix.
*/
private double[][] projection;
/**
* Constructor. Generate a non-sparse random projection.
* @param n the dimension of input space.
* @param p the dimension of feature space.
*/
public RandomProjection(int n, int p) {
this(n, p, false);
}
/**
* Constructor.
* @param n the dimension of input space.
* @param p the dimension of feature space.
* @param sparse true to generate a sparse random projection proposed by Achlioptas.
*/
public RandomProjection(int n, int p, boolean sparse) {
if (n < 2) {
throw new IllegalArgumentException("Invalid dimension of input space: " + n);
}
if (p < 1 || p > n) {
throw new IllegalArgumentException("Invalid dimension of feature space: " + p);
}
this.n = n;
this.p = p;
projection = new double[p][n];
if (sparse) {
double scale = Math.sqrt(3);
for (int i = 0; i < p; i++) {
for (int j = 0; j < n; j++) {
projection[i][j] = scale * (Math.random(prob) - 1);
}
}
} else {
GaussianDistribution gauss = GaussianDistribution.getInstance();
for (int i = 0; i < p; i++) {
for (int j = 0; j < n; j++) {
projection[i][j] = gauss.rand();
}
}
// Make the columns of the projection matrix orthogonal
// by modified Gram-Schmidt algorithm.
Math.unitize(projection[0]);
for (int i = 1; i < p; i++) {
for (int j = 0; j < i; j++) {
double t = -Math.dot(projection[i], projection[j]);
Math.axpy(t, projection[j], projection[i]);
}
Math.unitize(projection[i]);
}
}
}
/**
* Returns the projection matrix. The dimension reduced data can be obtained
* by y = W * x.
*/
public double[][] getProjection() {
return projection;
}
@Override
public double[] project(double[] x) {
if (x.length != n) {
throw new IllegalArgumentException(String.format("Invalid input vector size: %d, expected: %d", x.length, n));
}
double[] y = new double[p];
Math.ax(projection, x, y);
return y;
}
@Override
public double[][] project(double[][] x) {
if (x[0].length != n) {
throw new IllegalArgumentException(String.format("Invalid input vector size: %d, expected: %d", x[0].length, n));
}
double[][] y = new double[x.length][p];
for (int i = 0; i < x.length; i++) {
Math.ax(projection, x[i], y[i]);
}
return y;
}
}