smile.stat.distribution.EmpiricalDistribution Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.stat.distribution;
import java.util.Arrays;
import smile.math.Math;
/**
* An empirical distribution function or empirical cdf, is a cumulative
* probability distribution function that concentrates probability 1/n at
* each of the n numbers in a sample. As n grows the empirical distribution
* will getting closer to the true distribution.
* Empirical distribution is a very important estimator in Statistics. In
* particular, the Bootstrap method rely heavily on the empirical distribution.
*
* @author Haifeng Li
*/
public class EmpiricalDistribution extends DiscreteDistribution {
/**
* The possible values of random variable.
*/
private int[] x;
/**
* Minimum value of x.
*/
private int xMin;
/**
* Maximum value of x.
*/
private int xMax;
/**
* Probabilities for each x.
*/
private double[] p;
/**
* CDF at each x.
*/
private double[] cdf;
private double mean;
private double var;
private double sd;
private double entropy;
// Walker's alias method to generate random samples.
private int[] a;
private double[] q;
/**
* Constructor.
*/
public EmpiricalDistribution(double[] prob) {
if (prob.length == 0) {
throw new IllegalArgumentException("Empty probability set.");
}
xMin = 0;
xMax = prob.length - 1;
x = new int[prob.length];
p = new double[prob.length];
cdf = new double[prob.length];
mean = 0.0;
double mean2 = 0.0;
entropy = 0.0;
cdf[0] = prob[0];
for (int i = 0; i < prob.length; i++) {
if (prob[i] < 0 || prob[i] > 1) {
throw new IllegalArgumentException("Invalid probability " + p[i]);
}
x[i] = i;
p[i] = prob[i];
if (i > 0) {
cdf[i] = cdf[i - 1] + p[i];
}
mean += x[i] * p[i];
mean2 += x[i] * x[i] * p[i];
entropy -= p[i] * Math.log2(p[i]);
}
var = mean2 - mean * mean;
sd = Math.sqrt(var);
if (Math.abs(cdf[cdf.length - 1] - 1.0) > 1E-7) {
throw new IllegalArgumentException("The sum of probabilities is not 1.");
}
}
/**
* Constructor. CDF will be estimated from the data.
*/
public EmpiricalDistribution(int[] data) {
if (data.length == 0) {
throw new IllegalArgumentException("Empty dataset.");
}
xMin = Math.min(data);
xMax = Math.max(data);
int n = xMax - xMin + 1;
x = new int[n];
p = new double[n];
cdf = new double[n];
for (int i = 0; i < data.length; i++) {
p[data[i] - xMin]++;
}
mean = 0.0;
double mean2 = 0.0;
entropy = 0.0;
for (int i = 0; i < n; i++) {
x[i] = xMin + i;
p[i] /= data.length;
if (i == 0) {
cdf[0] = p[0];
} else {
cdf[i] = cdf[i - 1] + p[i];
}
mean += x[i] * p[i];
mean2 += x[i] * x[i] * p[i];
entropy -= p[i] * Math.log2(p[i]);
}
var = mean2 - mean * mean;
sd = Math.sqrt(var);
}
@Override
public int npara() {
return p.length;
}
@Override
public double mean() {
return mean;
}
@Override
public double var() {
return var;
}
@Override
public double sd() {
return sd;
}
@Override
public double entropy() {
return entropy;
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder("Empirical Distribution(");
for (int i = 0; i < p.length; i++) {
builder.append(p[i]);
builder.append(' ');
}
builder.setCharAt(builder.length() - 1, ')');
return builder.toString();
}
@Override
public double rand() {
if (a == null) {
initRand();
}
// generate sample
double rU = Math.random() * p.length;
int k = (int) (rU);
rU -= k; /* rU becomes rU-[rU] */
if (rU < q[k]) {
return k;
} else {
return a[k];
}
}
public int[] rand(int n) {
if (a == null) {
initRand();
}
// generate sample
int[] ans = new int[n];
for (int i = 0; i < n; i++) {
double rU = Math.random() * p.length;
int k = (int) (rU);
rU -= k; /* rU becomes rU-[rU] */
if (rU < q[k]) {
ans[i] = k;
} else {
ans[i] = a[k];
}
}
return ans;
}
private synchronized void initRand() {
// set up alias table
q = new double[p.length];
for (int i = 0; i < p.length; i++) {
q[i] = p[i] * p.length;
}
// initialize a with indices
a = new int[p.length];
for (int i = 0; i < p.length; i++) {
a[i] = i;
}
// set up H and L
int[] HL = new int[p.length];
int head = 0;
int tail = p.length - 1;
for (int i = 0; i < p.length; i++) {
if (q[i] >= 1.0) {
HL[head++] = i;
} else {
HL[tail--] = i;
}
}
while (head != 0 && tail != p.length - 1) {
int j = HL[tail + 1];
int k = HL[head - 1];
a[j] = k;
q[k] += q[j] - 1;
tail++; // remove j from L
if (q[k] < 1.0) {
HL[tail--] = k; // add k to L
head--; // remove k
}
}
}
@Override
public double p(int k) {
if (k < xMin || k > xMax) {
return 0.0;
} else {
return p[k - xMin];
}
}
@Override
public double logp(int k) {
if (k < xMin || k > xMax) {
return Double.NEGATIVE_INFINITY;
} else {
return Math.log(p[k - xMin]);
}
}
@Override
public double cdf(double k) {
if (k < xMin) {
return 0.0;
} else if (k >= xMax) {
return 1.0;
} else {
return cdf[(int) Math.floor(k - xMin)];
}
}
@Override
public double quantile(double p) {
if (p < 0.0 || p > 1.0) {
throw new IllegalArgumentException("Invalid p: " + p);
}
int k = Arrays.binarySearch(cdf, p);
if (k < 0) {
return x[-k - 1];
} else {
return x[k];
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy