smile.stat.distribution.GammaDistribution Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.stat.distribution;
import smile.math.special.Gamma;
import smile.math.Math;
/**
* The Gamma distribution is a continuous probability distributions with
* a scale parameter θ and a shape parameter k. If k is an
* integer then the distribution represents the sum of k independent
* exponentially distributed random variables, each of which has a rate
* parameter of θ). The gamma distribution is frequently a probability
* model for waiting times; for instance, the waiting time until death in life testing.
* The probability density function is
* f(x; k,θ) = xk-1e-x/θ / (θkΓ(k))
* for x > 0 and k, θ > 0.
*
* - If X ∼ Γ(k=1, θ=1/λ), then X has an exponential
* distribution with rate parameter λ.
*
- If X ∼ Γ(k=ν/2, θ=2), then X is identical to
* Χ2(ν), the chi-square distribution with ν degrees of
* freedom. Conversely, if Q ∼ Χ2(ν), and c is a positive
* constant, then c ⋅ Q ∼ Γ(k=ν/2, θ=2c).
*
- If k is an integer, the gamma distribution is an Erlang distribution
* and is the probability distribution of the waiting time until the k-th
* "arrival" in a one-dimensional Poisson process with intensity 1/θ.
*
- If X2 ∼ Γ(3/2, 2a2), then X has a
* Maxwell-Boltzmann distribution with parameter a.
*
* In Bayesian inference, the gamma distribution is the conjugate prior to
* many likelihood distributions: the Poisson, exponential, normal
* (with known mean), Pareto, gamma with known shape, and inverse gamma with
* known shape parameter.
*
* @author Haifeng Li
*/
public class GammaDistribution extends AbstractDistribution implements ExponentialFamily {
private double theta;
private double k;
private double logTheta;
private double thetaGammaK;
private double logGammaK;
private double entropy;
/**
* Constructor.
* @param shape the shape parameter.
* @param scale the scale parameter.
*/
public GammaDistribution(double shape, double scale) {
if (shape <= 0) {
throw new IllegalArgumentException("Invalid shape: " + shape);
}
if (scale <= 0) {
throw new IllegalArgumentException("Invalid scale: " + scale);
}
theta = scale;
k = shape;
logTheta = Math.log(theta);
thetaGammaK = theta * Gamma.gamma(k);
logGammaK = Gamma.logGamma(k);
entropy = k + Math.log(theta) + Gamma.logGamma(k) + (1 - k) * Gamma.digamma(k);
}
/**
* Constructor. Parameter will be estimated from the data by (approximate) MLE.
*/
public GammaDistribution(double[] data) {
for (int i = 0; i < data.length; i++) {
if (data[i] <= 0) {
throw new IllegalArgumentException("Samples contain non-positive values.");
}
}
double mu = 0.0;
double s = 0.0;
for (double x : data) {
mu += x;
s += Math.log(x);
}
mu /= data.length;
s = Math.log(mu) - s / data.length;
k = (3 - s + Math.sqrt((Math.sqr(s - 3) + 24 * s))) / (12 * s);
theta = mu / k;
logTheta = Math.log(theta);
thetaGammaK = theta * Gamma.gamma(k);
logGammaK = Gamma.logGamma(k);
entropy = k + Math.log(theta) + Gamma.logGamma(k) + (1 - k) * Gamma.digamma(k);
}
/**
* Returns the scale parameter.
*/
public double getScale() {
return theta;
}
/**
* Returns the shape parameter.
*/
public double getShape() {
return k;
}
@Override
public int npara() {
return 2;
}
@Override
public double mean() {
return k * theta;
}
@Override
public double var() {
return k * theta * theta;
}
@Override
public double sd() {
return Math.sqrt(k) * theta;
}
@Override
public double entropy() {
return entropy;
}
@Override
public String toString() {
return String.format("Gamma Distribution(%.4f, %.4f)", theta, k);
}
/**
* Only support shape parameter k of integer.
*/
@Override
public double rand() {
if (k - Math.floor(k) != 0.0) {
throw new IllegalArgumentException("Gamma random number generator support only integer shape parameter.");
}
double r = 0.0;
for (int i = 0; i < k; i++) {
r += Math.log(Math.random());
}
r *= -theta;
return r;
}
@Override
public double p(double x) {
if (x < 0) {
return 0.0;
} else {
return Math.pow(x / theta, k - 1) * Math.exp(-x / theta) / thetaGammaK;
}
}
@Override
public double logp(double x) {
if (x < 0) {
return Double.NEGATIVE_INFINITY;
} else {
return (k - 1) * Math.log(x) - x / theta - k * logTheta - logGammaK;
}
}
@Override
public double cdf(double x) {
if (x < 0) {
return 0.0;
} else {
return Gamma.regularizedIncompleteGamma(k, x / theta);
}
}
@Override
public double quantile(double p) {
if (p < 0.0 || p > 1.0) {
throw new IllegalArgumentException("Invalid p: " + p);
}
return Gamma.inverseRegularizedIncompleteGamma(k, p) * theta;
}
@Override
public Mixture.Component M(double[] x, double[] posteriori) {
double alpha = 0.0;
double mean = 0.0;
double var = 0.0;
for (int i = 0; i < x.length; i++) {
alpha += posteriori[i];
mean += x[i] * posteriori[i];
}
mean /= alpha;
for (int i = 0; i < x.length; i++) {
double d = x[i] - mean;
var += d * d * posteriori[i];
}
var = var / alpha;
Mixture.Component c = new Mixture.Component();
c.priori = alpha;
c.distribution = new GammaDistribution(mean * mean / var, var / mean);
return c;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy