All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.stat.distribution.GammaDistribution Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/
package smile.stat.distribution;

import smile.math.special.Gamma;
import smile.math.Math;

/**
 * The Gamma distribution is a continuous probability distributions with
 * a scale parameter θ and a shape parameter k. If k is an
 * integer then the distribution represents the sum of k independent
 * exponentially distributed random variables, each of which has a rate
 * parameter of θ). The gamma distribution is frequently a probability
 * model for waiting times; for instance, the waiting time until death in life testing.
 * The probability density function is
 * f(x; k,θ) = xk-1e-x/θ / (θkΓ(k))
 * for x > 0 and k, θ > 0.
 * 
    *
  • If X ∼ Γ(k=1, θ=1/λ), then X has an exponential * distribution with rate parameter λ. *
  • If X ∼ Γ(k=ν/2, θ=2), then X is identical to * Χ2(ν), the chi-square distribution with ν degrees of * freedom. Conversely, if Q ∼ Χ2(ν), and c is a positive * constant, then c ⋅ Q ∼ Γ(k=ν/2, θ=2c). *
  • If k is an integer, the gamma distribution is an Erlang distribution * and is the probability distribution of the waiting time until the k-th * "arrival" in a one-dimensional Poisson process with intensity 1/θ. *
  • If X2 ∼ Γ(3/2, 2a2), then X has a * Maxwell-Boltzmann distribution with parameter a. *
* In Bayesian inference, the gamma distribution is the conjugate prior to * many likelihood distributions: the Poisson, exponential, normal * (with known mean), Pareto, gamma with known shape, and inverse gamma with * known shape parameter. * * @author Haifeng Li */ public class GammaDistribution extends AbstractDistribution implements ExponentialFamily { private double theta; private double k; private double logTheta; private double thetaGammaK; private double logGammaK; private double entropy; /** * Constructor. * @param shape the shape parameter. * @param scale the scale parameter. */ public GammaDistribution(double shape, double scale) { if (shape <= 0) { throw new IllegalArgumentException("Invalid shape: " + shape); } if (scale <= 0) { throw new IllegalArgumentException("Invalid scale: " + scale); } theta = scale; k = shape; logTheta = Math.log(theta); thetaGammaK = theta * Gamma.gamma(k); logGammaK = Gamma.logGamma(k); entropy = k + Math.log(theta) + Gamma.logGamma(k) + (1 - k) * Gamma.digamma(k); } /** * Constructor. Parameter will be estimated from the data by (approximate) MLE. */ public GammaDistribution(double[] data) { for (int i = 0; i < data.length; i++) { if (data[i] <= 0) { throw new IllegalArgumentException("Samples contain non-positive values."); } } double mu = 0.0; double s = 0.0; for (double x : data) { mu += x; s += Math.log(x); } mu /= data.length; s = Math.log(mu) - s / data.length; k = (3 - s + Math.sqrt((Math.sqr(s - 3) + 24 * s))) / (12 * s); theta = mu / k; logTheta = Math.log(theta); thetaGammaK = theta * Gamma.gamma(k); logGammaK = Gamma.logGamma(k); entropy = k + Math.log(theta) + Gamma.logGamma(k) + (1 - k) * Gamma.digamma(k); } /** * Returns the scale parameter. */ public double getScale() { return theta; } /** * Returns the shape parameter. */ public double getShape() { return k; } @Override public int npara() { return 2; } @Override public double mean() { return k * theta; } @Override public double var() { return k * theta * theta; } @Override public double sd() { return Math.sqrt(k) * theta; } @Override public double entropy() { return entropy; } @Override public String toString() { return String.format("Gamma Distribution(%.4f, %.4f)", theta, k); } /** * Only support shape parameter k of integer. */ @Override public double rand() { if (k - Math.floor(k) != 0.0) { throw new IllegalArgumentException("Gamma random number generator support only integer shape parameter."); } double r = 0.0; for (int i = 0; i < k; i++) { r += Math.log(Math.random()); } r *= -theta; return r; } @Override public double p(double x) { if (x < 0) { return 0.0; } else { return Math.pow(x / theta, k - 1) * Math.exp(-x / theta) / thetaGammaK; } } @Override public double logp(double x) { if (x < 0) { return Double.NEGATIVE_INFINITY; } else { return (k - 1) * Math.log(x) - x / theta - k * logTheta - logGammaK; } } @Override public double cdf(double x) { if (x < 0) { return 0.0; } else { return Gamma.regularizedIncompleteGamma(k, x / theta); } } @Override public double quantile(double p) { if (p < 0.0 || p > 1.0) { throw new IllegalArgumentException("Invalid p: " + p); } return Gamma.inverseRegularizedIncompleteGamma(k, p) * theta; } @Override public Mixture.Component M(double[] x, double[] posteriori) { double alpha = 0.0; double mean = 0.0; double var = 0.0; for (int i = 0; i < x.length; i++) { alpha += posteriori[i]; mean += x[i] * posteriori[i]; } mean /= alpha; for (int i = 0; i < x.length; i++) { double d = x[i] - mean; var += d * d * posteriori[i]; } var = var / alpha; Mixture.Component c = new Mixture.Component(); c.priori = alpha; c.distribution = new GammaDistribution(mean * mean / var, var / mean); return c; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy