smile.stat.distribution.GaussianMixture Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.stat.distribution;
import java.util.List;
import java.util.ArrayList;
import smile.math.Math;
/**
* Finite univariate Gaussian mixture. The EM algorithm is provide to learned
* the mixture model from data. BIC score is employed to estimate the number
* of components.
*
* @author Haifeng Li
*/
public class GaussianMixture extends ExponentialFamilyMixture {
/**
* Constructor.
* @param mixture a list of multivariate Gaussian distributions.
*/
public GaussianMixture(List mixture) {
super(mixture);
}
/**
* Constructor. The Gaussian mixture model will be learned from the given data
* with the EM algorithm.
* @param data the training data.
* @param k the number of components.
*/
public GaussianMixture(double[] data, int k) {
if (k < 2)
throw new IllegalArgumentException("Invalid number of components in the mixture.");
double min = Math.min(data);
double max = Math.max(data);
double step = (max - min) / (k+1);
for (int i = 0; i < k; i++) {
Component c = new Component();
c.priori = 1.0 / k;
c.distribution = new GaussianDistribution(min+=step, step);
components.add(c);
}
EM(components, data);
}
/**
* Constructor. The Gaussian mixture model will be learned from the given data
* with the EM algorithm. The number of components will be selected by BIC.
* @param data the training data.
*/
@SuppressWarnings("unchecked")
public GaussianMixture(double[] data) {
if (data.length < 20)
throw new IllegalArgumentException("Too few samples.");
ArrayList mixture = new ArrayList();
Component c = new Component();
c.priori = 1.0;
c.distribution = new GaussianDistribution(data);
mixture.add(c);
int freedom = 0;
for (int i = 0; i < mixture.size(); i++)
freedom += mixture.get(i).distribution.npara();
double bic = 0.0;
for (double x : data) {
double p = c.distribution.p(x);
if (p > 0) bic += Math.log(p);
}
bic -= 0.5 * freedom * Math.log(data.length);
double b = Double.NEGATIVE_INFINITY;
while (bic > b) {
b = bic;
components = (ArrayList) mixture.clone();
split(mixture);
bic = EM(mixture, data);
freedom = 0;
for (int i = 0; i < mixture.size(); i++)
freedom += mixture.get(i).distribution.npara();
bic -= 0.5 * freedom * Math.log(data.length);
}
}
/**
* Split the most heterogeneous cluster along its main direction (eigenvector).
*/
private void split(List mixture) {
// Find most dispersive cluster (biggest sigma)
Component componentToSplit = null;
double maxSigma = 0.0;
for (Component c : mixture) {
if (c.distribution.sd() > maxSigma) {
maxSigma = c.distribution.sd();
componentToSplit = c;
}
}
// Splits the component
double delta = componentToSplit.distribution.sd();
double mu = componentToSplit.distribution.mean();
Component c = new Component();
c.priori = componentToSplit.priori / 2;
c.distribution = new GaussianDistribution(mu + delta/2, delta);
mixture.add(c);
c = new Component();
c.priori = componentToSplit.priori / 2;
c.distribution = new GaussianDistribution(mu - delta/2, delta);
mixture.add(c);
mixture.remove(componentToSplit);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy