All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.stat.distribution.Mixture Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.stat.distribution;

import java.util.List;
import java.util.ArrayList;
import smile.math.Math;

/**
 * A finite mixture model is a probabilistic model for density estimation using a
 * mixture distribution. A mixture model can be regarded as a type of
 * unsupervised learning or clustering.
 * 

* The Expectation-maximization algorithm can be used to compute the * parameters of a parametric mixture model distribution. The EM algorithm is * a method for finding maximum likelihood estimates of parameters, where the * model depends on unobserved latent variables. EM is an iterative method which * alternates between performing an expectation (E) step, which computes the * expectation of the log-likelihood evaluated using the current estimate for * the latent variables, and a maximization (M) step, which computes parameters * maximizing the expected log-likelihood found on the E step. These parameter * estimates are then used to determine the distribution of the latent variables * in the next E step. * * @author Haifeng Li */ public class Mixture extends AbstractDistribution { /** * A component in the mixture distribution is defined by a distribution * and its weight in the mixture. */ public static class Component { /** * The distribution of component. */ public Distribution distribution; /** * The priori probability of component. */ public double priori; } List components; /** * Constructor. */ Mixture() { components = new ArrayList(); } /** * Constructor. * @param mixture a list of distributions. */ public Mixture(List mixture) { components = new ArrayList(); components.addAll(mixture); double sum = 0.0; for (Component component : mixture) { sum += component.priori; } if (Math.abs(sum - 1.0) > 1E-3) throw new IllegalArgumentException("The sum of priori is not equal to 1."); } @Override public double mean() { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); double mu = 0.0; for (Component c : components) mu += c.priori * c.distribution.mean(); return mu; } @Override public double var() { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); double variance = 0.0; for (Component c : components) variance += c.priori * c.priori * c.distribution.var(); return variance; } @Override public double sd() { return Math.sqrt(var()); } /** * Shannon entropy. Not supported. */ @Override public double entropy() { throw new UnsupportedOperationException("Mixture does not support entropy()"); } @Override public double p(double x) { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); double p = 0.0; for (Component c : components) p += c.priori * c.distribution.p(x); return p; } @Override public double logp(double x) { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); return Math.log(p(x)); } @Override public double cdf(double x) { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); double p = 0.0; for (Component c : components) p += c.priori * c.distribution.cdf(x); return p; } @Override public double rand() { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); double r = Math.random(); double p = 0.0; for (Component g : components) { p += g.priori; if (r <= p) return g.distribution.rand(); } // we should not arrive here. return components.get(components.size()-1).distribution.rand(); } @Override public double quantile(double p) { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); if (p < 0.0 || p > 1.0) { throw new IllegalArgumentException("Invalid p: " + p); } // Starting guess near peak of density. // Expand interval until we bracket. double xl, xu, inc = 1; double x = (int) mean(); if (p < cdf(x)) { do { x -= inc; inc *= 2; } while (p < cdf(x)); xl = x; xu = x + inc / 2; } else { do { x += inc; inc *= 2; } while (p > cdf(x)); xu = x; xl = x - inc / 2; } return quantile(p, xl, xu); } @Override public int npara() { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); int f = components.size() - 1; // independent priori parameters for (int i = 0; i < components.size(); i++) f += components.get(i).distribution.npara(); return f; } /** * Returns the number of components in the mixture. */ public int size() { return components.size(); } /** * BIC score of the mixture for given data. */ public double bic(double[] data) { if (components.isEmpty()) throw new IllegalStateException("Mixture is empty!"); int n = data.length; double logLikelihood = 0.0; for (double x : data) { double p = p(x); if (p > 0) logLikelihood += Math.log(p); } return logLikelihood - 0.5 * npara() * Math.log(n); } /** * Returns the list of components in the mixture. */ public List getComponents() { return components; } @Override public String toString() { StringBuilder builder = new StringBuilder(); builder.append("Mixture["); builder.append(components.size()); builder.append("]:{"); for (Component c : components) { builder.append(" ("); builder.append(c.distribution); builder.append(':'); builder.append(String.format("%.4f", c.priori)); builder.append(')'); } builder.append("}"); return builder.toString(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy