smile.stat.distribution.TDistribution Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.stat.distribution;
import smile.math.special.Beta;
import smile.math.special.Gamma;
import smile.math.Math;
/**
* Student's t-distribution (or simply the t-distribution) is a probability
* distribution that arises in the problem of estimating the mean of a
* normally distributed population when the sample size is small.
* Student's t-distribution arises when (as in nearly all practical statistical
* work) the population standard deviation is unknown and has to be estimated
* from the data. It is
* the basis of the popular Student's t-tests for the statistical significance
* of the difference between two sample means, and for confidence intervals
* for the difference between two population means. The Student's
* t-distribution is a special case of the generalised hyperbolic distribution.
*
* @author Haifeng Li
*/
public class TDistribution extends AbstractDistribution {
private int nu;
private double entropy;
private double np;
private double fac;
/**
* Constructor.
* @param nu degree of freedom.
*/
public TDistribution(int nu) {
if (nu < 1) {
throw new IllegalArgumentException("Invalid nu = " + nu);
}
this.nu = nu;
entropy = 0.5 * (nu + 1) * (Gamma.digamma((nu + 1) / 2.0) - Gamma.digamma(nu / 2.0)) + Math.log(Math.sqrt(nu) * Beta.beta(nu / 2.0, 0.5));
np = 0.5 * (nu + 1.0);
fac = Gamma.logGamma(np) - Gamma.logGamma(0.5 * nu);
}
@Override
public int npara() {
return 1;
}
@Override
public double mean() {
if (nu == 1) {
throw new UnsupportedOperationException("Mean is undefined for T distribution with nu = 1");
}
return 0.0;
}
@Override
public double var() {
return nu / (nu - 2.0);
}
@Override
public double sd() {
return Math.sqrt(nu / (nu - 2.0));
}
@Override
public double entropy() {
return entropy;
}
@Override
public String toString() {
return String.format("t-distribution(%d)", nu);
}
@Override
public double rand() {
return inverseTransformSampling();
}
@Override
public double p(double x) {
return Math.exp(-np * Math.log(1.0 + x * x / nu) + fac) / Math.sqrt(Math.PI * nu);
}
@Override
public double logp(double x) {
return -np * Math.log(1.0 + x * x / nu) + fac - Math.log(Math.sqrt(Math.PI * nu));
}
@Override
public double cdf(double x) {
double p = 0.5 * Beta.regularizedIncompleteBetaFunction(0.5 * nu, 0.5, nu / (nu + x * x));
if (x >= 0) {
return 1.0 - p;
} else {
return p;
}
}
@Override
public double quantile(double p) {
if (p < 0.0 || p > 1.0) {
throw new IllegalArgumentException("Invalid p: " + p);
}
double x = Beta.inverseRegularizedIncompleteBetaFunction(0.5 * nu, 0.5, 2.0 * Math.min(p, 1.0 - p));
x = Math.sqrt(nu * (1.0 - x) / x);
return p >= 0.5 ? x : -x;
}
/**
* Two-tailed cdf.
*/
public double cdf2tiled(double x) {
if (x < 0) {
throw new IllegalArgumentException("Invalid x: " + x);
}
return 1.0 - Beta.regularizedIncompleteBetaFunction(0.5 * nu, 0.5, nu / (nu + x * x));
}
/**
* Two-tailed quantile.
*/
public double quantile2tiled(double p) {
if (p < 0.0 || p > 1.0) {
throw new IllegalArgumentException("Invalid p: " + p);
}
double x = Beta.inverseRegularizedIncompleteBetaFunction(0.5 * nu, 0.5, 1.0 - p);
return Math.sqrt(nu * (1.0 - x) / x);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy