org.roaringbitmap.RunContainer Maven / Gradle / Ivy
/*
* (c) the authors Licensed under the Apache License, Version 2.0.
*/
package org.roaringbitmap;
import org.roaringbitmap.buffer.MappeableContainer;
import org.roaringbitmap.buffer.MappeableRunContainer;
import java.io.*;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.CharBuffer;
import java.util.Arrays;
import java.util.Iterator;
/**
* This container takes the form of runs of consecutive values (effectively, run-length encoding).
*
* Adding and removing content from this container might make it wasteful so regular calls to
* "runOptimize" might be warranted.
*/
public final class RunContainer extends Container implements Cloneable {
private static final int DEFAULT_INIT_SIZE = 4;
private static final boolean ENABLE_GALLOPING_AND = false;
private static final long serialVersionUID = 1L;
private static int branchyUnsignedInterleavedBinarySearch(final char[] array, final int begin,
final int end, final char k) {
int low = begin;
int high = end - 1;
while (low <= high) {
final int middleIndex = (low + high) >>> 1;
final int middleValue = (array[2 * middleIndex]);
if (middleValue < (int) (k)) {
low = middleIndex + 1;
} else if (middleValue > (int) (k)) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
return -(low + 1);
}
// starts with binary search and finishes with a sequential search
private static int hybridUnsignedInterleavedBinarySearch(final char[] array, final int begin,
final int end, final char k) {
int low = begin;
int high = end - 1;
// 16 in the next line matches the size of a cache line
while (low + 16 <= high) {
final int middleIndex = (low + high) >>> 1;
final int middleValue = (array[2 * middleIndex]);
if (middleValue < (int) (k)) {
low = middleIndex + 1;
} else if (middleValue > (int) (k)) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
// we finish the job with a sequential search
int x = low;
for (; x <= high; ++x) {
final int val = (array[2 * x]);
if (val >= (int) (k)) {
if (val == (int) (k)) {
return x;
}
break;
}
}
return -(x + 1);
}
protected static int serializedSizeInBytes(int numberOfRuns) {
return 2 + 2 * 2 * numberOfRuns; // each run requires 2 2-byte entries.
}
private static int unsignedInterleavedBinarySearch(final char[] array, final int begin,
final int end, final char k) {
if (Util.USE_HYBRID_BINSEARCH) {
return hybridUnsignedInterleavedBinarySearch(array, begin, end, k);
} else {
return branchyUnsignedInterleavedBinarySearch(array, begin, end, k);
}
}
private char[] valueslength;// we interleave values and lengths, so
// that if you have the values 11,12,13,14,15, you store that as 11,4 where 4 means that beyond 11
// itself, there are
// 4 contiguous values that follows.
// Other example: e.g., 1, 10, 20,0, 31,2 would be a concise representation of 1, 2, ..., 11, 20,
// 31, 32, 33
int nbrruns = 0;// how many runs, this number should fit in 16 bits.
/**
* Create a container with default capacity
*/
public RunContainer() {
this(DEFAULT_INIT_SIZE);
}
protected RunContainer(ArrayContainer arr, int nbrRuns) {
this.nbrruns = nbrRuns;
valueslength = new char[2 * nbrRuns];
if (nbrRuns == 0) {
return;
}
int prevVal = -2;
int runLen = 0;
int runCount = 0;
for (int i = 0; i < arr.cardinality; i++) {
int curVal = arr.content[i];
if (curVal == prevVal + 1) {
++runLen;
} else {
if (runCount > 0) {
setLength(runCount - 1, (char) runLen);
}
setValue(runCount, (char) curVal);
runLen = 0;
++runCount;
}
prevVal = curVal;
}
setLength(runCount - 1, (char) runLen);
}
/**
* Create an run container with a run of ones from firstOfRun to lastOfRun.
*
* @param firstOfRun first index
* @param lastOfRun last index (range is exclusive)
*/
public RunContainer(final int firstOfRun, final int lastOfRun) {
this.nbrruns = 1;
this.valueslength = new char[]{(char) firstOfRun, (char) (lastOfRun - 1 - firstOfRun)};
}
// convert a bitmap container to a run container somewhat efficiently.
protected RunContainer(BitmapContainer bc, int nbrRuns) {
this.nbrruns = nbrRuns;
valueslength = new char[2 * nbrRuns];
if (nbrRuns == 0) {
return;
}
int longCtr = 0; // index of current long in bitmap
long curWord = bc.bitmap[0]; // its value
int runCount = 0;
while (true) {
// potentially multiword advance to first 1 bit
while (curWord == 0L && longCtr < bc.bitmap.length - 1) {
curWord = bc.bitmap[++longCtr];
}
if (curWord == 0L) {
// wrap up, no more runs
return;
}
int localRunStart = Long.numberOfTrailingZeros(curWord);
int runStart = localRunStart + 64 * longCtr;
// stuff 1s into number's LSBs
long curWordWith1s = curWord | (curWord - 1);
// find the next 0, potentially in a later word
int runEnd;
while (curWordWith1s == -1L && longCtr < bc.bitmap.length - 1) {
curWordWith1s = bc.bitmap[++longCtr];
}
if (curWordWith1s == -1L) {
// a final unterminated run of 1s (32 of them)
runEnd = 64 + longCtr * 64;
setValue(runCount, (char) runStart);
setLength(runCount, (char) (runEnd - runStart - 1));
return;
}
int localRunEnd = Long.numberOfTrailingZeros(~curWordWith1s);
runEnd = localRunEnd + longCtr * 64;
setValue(runCount, (char) runStart);
setLength(runCount, (char) (runEnd - runStart - 1));
runCount++;
// now, zero out everything right of runEnd.
curWord = curWordWith1s & (curWordWith1s + 1);
// We've lathered and rinsed, so repeat...
}
}
/**
* Create an array container with specified capacity
*
* @param capacity The capacity of the container
*/
public RunContainer(final int capacity) {
valueslength = new char[2 * capacity];
}
private RunContainer(int nbrruns, char[] valueslength) {
this.nbrruns = nbrruns;
this.valueslength = Arrays.copyOf(valueslength, valueslength.length);
}
/**
* Creates a new non-mappeable container from a mappeable one. This copies the data.
*
* @param bc the original container
*/
public RunContainer(MappeableRunContainer bc) {
this.nbrruns = bc.numberOfRuns();
this.valueslength = bc.toCharArray();
}
/**
* Construct a new RunContainer backed by the provided array. Note that if you modify the
* RunContainer a new array may be produced.
*
* @param array array where the data is stored
* @param numRuns number of runs (each using 2 shorts in the buffer)
*
*/
public RunContainer(final char[] array, final int numRuns) {
if (array.length < 2 * numRuns) {
throw new RuntimeException("Mismatch between buffer and numRuns");
}
this.nbrruns = numRuns;
this.valueslength = array;
}
@Override
public Container add(int begin, int end) {
RunContainer rc = (RunContainer) clone();
return rc.iadd(begin, end);
}
@Override
public Container add(char k) {
// TODO: it might be better and simpler to do return
// toBitmapOrArrayContainer(getCardinality()).add(k)
// but note that some unit tests use this method to build up test runcontainers without calling
// runOptimize
int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, k);
if (index >= 0) {
return this;// already there
}
index = -index - 2;// points to preceding value, possibly -1
if (index >= 0) {// possible match
int offset = (k) - (getValue(index));
int le = (getLength(index));
if (offset <= le) {
return this;
}
if (offset == le + 1) {
// we may need to fuse
if (index + 1 < nbrruns) {
if ((getValue(index + 1)) == (k) + 1) {
// indeed fusion is needed
setLength(index,
(char) (getValue(index + 1) + getLength(index + 1) - getValue(index)));
recoverRoomAtIndex(index + 1);
return this;
}
}
incrementLength(index);
return this;
}
if (index + 1 < nbrruns) {
// we may need to fuse
if ((getValue(index + 1)) == (k) + 1) {
// indeed fusion is needed
setValue(index + 1, k);
setLength(index + 1, (char) (getLength(index + 1) + 1));
return this;
}
}
}
if (index == -1) {
// we may need to extend the first run
if (0 < nbrruns) {
if (getValue(0) == k + 1) {
incrementLength(0);
decrementValue(0);
return this;
}
}
}
makeRoomAtIndex(index + 1);
setValue(index + 1, k);
setLength(index + 1, (char) 0);
return this;
}
@Override
public Container and(ArrayContainer x) {
ArrayContainer ac = new ArrayContainer(x.cardinality);
if (this.nbrruns == 0) {
return ac;
}
int rlepos = 0;
int arraypos = 0;
int rleval = (this.getValue(rlepos));
int rlelength = (this.getLength(rlepos));
while (arraypos < x.cardinality) {
int arrayval = (x.content[arraypos]);
while (rleval + rlelength < arrayval) {// this will frequently be false
++rlepos;
if (rlepos == this.nbrruns) {
return ac;// we are done
}
rleval = (this.getValue(rlepos));
rlelength = (this.getLength(rlepos));
}
if (rleval > arrayval) {
arraypos = Util.advanceUntil(x.content, arraypos, x.cardinality, (char)rleval);
} else {
ac.content[ac.cardinality] = (char) arrayval;
ac.cardinality++;
arraypos++;
}
}
return ac;
}
@Override
public Container and(BitmapContainer x) {
// could be implemented as return toBitmapOrArrayContainer().iand(x);
int card = this.getCardinality();
if (card <= ArrayContainer.DEFAULT_MAX_SIZE) {
// result can only be an array (assuming that we never make a RunContainer)
if (card > x.cardinality) {
card = x.cardinality;
}
ArrayContainer answer = new ArrayContainer(card);
answer.cardinality = 0;
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int runStart = (this.getValue(rlepos));
int runEnd = runStart + (this.getLength(rlepos));
for (int runValue = runStart; runValue <= runEnd; ++runValue) {
if (x.contains((char) runValue)) {// it looks like contains() should be cheap enough if
// accessed sequentially
answer.content[answer.cardinality++] = (char) runValue;
}
}
}
return answer;
}
// we expect the answer to be a bitmap (if we are lucky)
BitmapContainer answer = x.clone();
int start = 0;
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int end = (this.getValue(rlepos));
int prevOnes = answer.cardinalityInRange(start, end);
Util.resetBitmapRange(answer.bitmap, start, end); // had been x.bitmap
answer.updateCardinality(prevOnes, 0);
start = end + (this.getLength(rlepos)) + 1;
}
int ones = answer.cardinalityInRange(start, BitmapContainer.MAX_CAPACITY);
Util.resetBitmapRange(answer.bitmap, start, BitmapContainer.MAX_CAPACITY); // had been x.bitmap
answer.updateCardinality(ones, 0);
if (answer.getCardinality() > ArrayContainer.DEFAULT_MAX_SIZE) {
return answer;
} else {
return answer.toArrayContainer();
}
}
@Override
public Container and(RunContainer x) {
int maxRunsAfterIntersection = nbrruns + x.nbrruns;
RunContainer answer = new RunContainer(new char[2 * maxRunsAfterIntersection], 0);
if (isEmpty()) {
return answer;
}
int rlepos = 0;
int xrlepos = 0;
int start = this.getValue(rlepos);
int end = start + this.getLength(rlepos) + 1;
int xstart = x.getValue(xrlepos);
int xend = xstart + x.getLength(xrlepos) + 1;
while (rlepos < this.nbrruns && xrlepos < x.nbrruns) {
if (end <= xstart) {
if (ENABLE_GALLOPING_AND) {
rlepos = skipAhead(this, rlepos, xstart); // skip over runs until we have end > xstart (or
// rlepos is advanced beyond end)
} else {
++rlepos;
}
if (rlepos < this.nbrruns) {
start = this.getValue(rlepos);
end = start + this.getLength(rlepos) + 1;
}
} else if (xend <= start) {
// exit the second run
if (ENABLE_GALLOPING_AND) {
xrlepos = skipAhead(x, xrlepos, start);
} else {
++xrlepos;
}
if (xrlepos < x.nbrruns) {
xstart = x.getValue(xrlepos);
xend = xstart + x.getLength(xrlepos) + 1;
}
} else {// they overlap
final int lateststart = Math.max(start, xstart);
int earliestend;
if (end == xend) {// improbable
earliestend = end;
rlepos++;
xrlepos++;
if (rlepos < this.nbrruns) {
start = this.getValue(rlepos);
end = start + this.getLength(rlepos) + 1;
}
if (xrlepos < x.nbrruns) {
xstart = x.getValue(xrlepos);
xend = xstart + x.getLength(xrlepos) + 1;
}
} else if (end < xend) {
earliestend = end;
rlepos++;
if (rlepos < this.nbrruns) {
start = this.getValue(rlepos);
end = start + this.getLength(rlepos) + 1;
}
} else {// end > xend
earliestend = xend;
xrlepos++;
if (xrlepos < x.nbrruns) {
xstart = x.getValue(xrlepos);
xend = xstart + x.getLength(xrlepos) + 1;
}
}
answer.valueslength[2 * answer.nbrruns] = (char) lateststart;
answer.valueslength[2 * answer.nbrruns + 1] = (char) (earliestend - lateststart - 1);
answer.nbrruns++;
}
}
return answer.toEfficientContainer(); // subsequent trim() may be required to avoid wasted
// space.
}
@Override
public int andCardinality(ArrayContainer x) {
if (this.nbrruns == 0) {
return x.cardinality;
}
int rlepos = 0;
int arraypos = 0;
int andCardinality = 0;
int rleval = (this.getValue(rlepos));
int rlelength = (this.getLength(rlepos));
while (arraypos < x.cardinality) {
int arrayval = (x.content[arraypos]);
while (rleval + rlelength < arrayval) {// this will frequently be false
++rlepos;
if (rlepos == this.nbrruns) {
return andCardinality;// we are done
}
rleval = (this.getValue(rlepos));
rlelength = (this.getLength(rlepos));
}
if (rleval > arrayval) {
arraypos = Util.advanceUntil(x.content, arraypos, x.cardinality, this.getValue(rlepos));
} else {
andCardinality++;
arraypos++;
}
}
return andCardinality;
}
@Override
public int andCardinality(BitmapContainer x) {
// could be implemented as return toBitmapOrArrayContainer().iand(x);
int cardinality = 0;
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int runStart = this.getValue(rlepos);
int runEnd = runStart + this.getLength(rlepos);
cardinality += x.cardinalityInRange(runStart, runEnd + 1);
}
return cardinality;
}
@Override
public int andCardinality(RunContainer x) {
int cardinality = 0;
int rlepos = 0;
int xrlepos = 0;
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
int xstart = (x.getValue(xrlepos));
int xend = xstart + (x.getLength(xrlepos)) + 1;
while ((rlepos < this.nbrruns) && (xrlepos < x.nbrruns)) {
if (end <= xstart) {
if (ENABLE_GALLOPING_AND) {
rlepos = skipAhead(this, rlepos, xstart); // skip over runs until we have end > xstart (or
// rlepos is advanced beyond end)
} else {
++rlepos;
}
if (rlepos < this.nbrruns) {
start = (this.getValue(rlepos));
end = start + (this.getLength(rlepos)) + 1;
}
} else if (xend <= start) {
// exit the second run
if (ENABLE_GALLOPING_AND) {
xrlepos = skipAhead(x, xrlepos, start);
} else {
++xrlepos;
}
if (xrlepos < x.nbrruns) {
xstart = (x.getValue(xrlepos));
xend = xstart + (x.getLength(xrlepos)) + 1;
}
} else {// they overlap
final int lateststart = Math.max(start, xstart);
int earliestend;
if (end == xend) {// improbable
earliestend = end;
rlepos++;
xrlepos++;
if (rlepos < this.nbrruns) {
start = (this.getValue(rlepos));
end = start + (this.getLength(rlepos)) + 1;
}
if (xrlepos < x.nbrruns) {
xstart = (x.getValue(xrlepos));
xend = xstart + (x.getLength(xrlepos)) + 1;
}
} else if (end < xend) {
earliestend = end;
rlepos++;
if (rlepos < this.nbrruns) {
start = (this.getValue(rlepos));
end = start + (this.getLength(rlepos)) + 1;
}
} else {// end > xend
earliestend = xend;
xrlepos++;
if (xrlepos < x.nbrruns) {
xstart = (x.getValue(xrlepos));
xend = xstart + (x.getLength(xrlepos)) + 1;
}
}
// earliestend - lateststart are all values that are true.
cardinality += earliestend - lateststart;
}
}
return cardinality;
}
@Override
public Container andNot(ArrayContainer x) {
// when x is small, we guess that the result will still be a run container
final int arbitrary_threshold = 32; // this is arbitrary
if (x.getCardinality() < arbitrary_threshold) {
return lazyandNot(x).toEfficientContainer();
}
// otherwise we generate either an array or bitmap container
final int card = getCardinality();
if (card <= ArrayContainer.DEFAULT_MAX_SIZE) {
// if the cardinality is small, we construct the solution in place
ArrayContainer ac = new ArrayContainer(card);
ac.cardinality =
Util.unsignedDifference(this.getCharIterator(), x.getCharIterator(), ac.content);
return ac;
}
// otherwise, we generate a bitmap
return toBitmapOrArrayContainer(card).iandNot(x);
}
@Override
public Container andNot(BitmapContainer x) {
// could be implemented as toTemporaryBitmap().iandNot(x);
int card = this.getCardinality();
if (card <= ArrayContainer.DEFAULT_MAX_SIZE) {
// result can only be an array (assuming that we never make a RunContainer)
ArrayContainer answer = new ArrayContainer(card);
answer.cardinality = 0;
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int runStart = (this.getValue(rlepos));
int runEnd = runStart + (this.getLength(rlepos));
for (int runValue = runStart; runValue <= runEnd; ++runValue) {
if (!x.contains((char) runValue)) {// it looks like contains() should be cheap enough if
// accessed sequentially
answer.content[answer.cardinality++] = (char) runValue;
}
}
}
return answer;
}
// we expect the answer to be a bitmap (if we are lucky)
BitmapContainer answer = x.clone();
int lastPos = 0;
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
int prevOnes = answer.cardinalityInRange(lastPos, start);
int flippedOnes = answer.cardinalityInRange(start, end);
Util.resetBitmapRange(answer.bitmap, lastPos, start);
Util.flipBitmapRange(answer.bitmap, start, end);
answer.updateCardinality(prevOnes + flippedOnes, end - start - flippedOnes);
lastPos = end;
}
int ones = answer.cardinalityInRange(lastPos, BitmapContainer.MAX_CAPACITY);
Util.resetBitmapRange(answer.bitmap, lastPos, BitmapContainer.MAX_CAPACITY);
answer.updateCardinality(ones, 0);
if (answer.getCardinality() > ArrayContainer.DEFAULT_MAX_SIZE) {
return answer;
} else {
return answer.toArrayContainer();
}
}
@Override
public Container andNot(RunContainer x) {
RunContainer answer = new RunContainer(new char[2 * (this.nbrruns + x.nbrruns)], 0);
int rlepos = 0;
int xrlepos = 0;
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
int xstart = (x.getValue(xrlepos));
int xend = xstart + (x.getLength(xrlepos)) + 1;
while ((rlepos < this.nbrruns) && (xrlepos < x.nbrruns)) {
if (end <= xstart) {
// output the first run
answer.valueslength[2 * answer.nbrruns] = (char) start;
answer.valueslength[2 * answer.nbrruns + 1] = (char) (end - start - 1);
answer.nbrruns++;
rlepos++;
if (rlepos < this.nbrruns) {
start = (this.getValue(rlepos));
end = start + (this.getLength(rlepos)) + 1;
}
} else if (xend <= start) {
// exit the second run
xrlepos++;
if (xrlepos < x.nbrruns) {
xstart = (x.getValue(xrlepos));
xend = xstart + (x.getLength(xrlepos)) + 1;
}
} else {
if (start < xstart) {
answer.valueslength[2 * answer.nbrruns] = (char) start;
answer.valueslength[2 * answer.nbrruns + 1] = (char) (xstart - start - 1);
answer.nbrruns++;
}
if (xend < end) {
start = xend;
} else {
rlepos++;
if (rlepos < this.nbrruns) {
start = (this.getValue(rlepos));
end = start + (this.getLength(rlepos)) + 1;
}
}
}
}
if (rlepos < this.nbrruns) {
answer.valueslength[2 * answer.nbrruns] = (char) start;
answer.valueslength[2 * answer.nbrruns + 1] = (char) (end - start - 1);
answer.nbrruns++;
rlepos++;
if (rlepos < this.nbrruns) {
System.arraycopy(this.valueslength, 2 * rlepos, answer.valueslength, 2 * answer.nbrruns,
2 * (this.nbrruns - rlepos));
answer.nbrruns = answer.nbrruns + this.nbrruns - rlepos;
}
}
return answer.toEfficientContainer();
}
// Append a value length with all values until a given value
private void appendValueLength(int value, int index) {
int previousValue = (getValue(index));
int length = (getLength(index));
int offset = value - previousValue;
if (offset > length) {
setLength(index, (char) offset);
}
}
// To check if a value length can be prepended with a given value
private boolean canPrependValueLength(int value, int index) {
if (index < this.nbrruns) {
int nextValue = (getValue(index));
return nextValue == value + 1;
}
return false;
}
@Override
public void clear() {
nbrruns = 0;
}
@Override
public Container clone() {
return new RunContainer(nbrruns, valueslength);
}
@Override
public boolean isEmpty() {
return nbrruns == 0;
}
// To set the last value of a value length
private void closeValueLength(int value, int index) {
int initialValue = (getValue(index));
setLength(index, (char) (value - initialValue));
}
@Override
public boolean contains(char x) {
int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, x);
if (index >= 0) {
return true;
}
index = -index - 2; // points to preceding value, possibly -1
if (index != -1) {// possible match
int offset = x - getValue(index);
int le = getLength(index);
return offset <= le;
}
return false;
}
@Override
public boolean contains(int minimum, int supremum) {
for (int i = 0; i < numberOfRuns(); ++i) {
int start = getValue(i);
int length = getLength(i);
int stop = start + length + 1;
if (start >= supremum) {
break;
}
if (minimum >= start && supremum <= stop) {
return true;
}
}
return false;
}
@Override
protected boolean contains(RunContainer runContainer) {
int i1 = 0, i2 = 0;
while(i1 < numberOfRuns() && i2 < runContainer.numberOfRuns()) {
int start1 = (getValue(i1));
int stop1 = start1 + (getLength(i1));
int start2 = (runContainer.getValue(i2));
int stop2 = start2 + (runContainer.getLength(i2));
if(start1 > start2) {
return false;
} else {
if(stop1 > stop2) {
i2++;
} else if(stop1 == stop2) {
i1++;
i2++;
} else {
i1++;
}
}
}
return i2 == runContainer.numberOfRuns();
}
@Override
protected boolean contains(ArrayContainer arrayContainer) {
final int cardinality = getCardinality();
final int runCount = numberOfRuns();
if (arrayContainer.getCardinality() > cardinality) {
return false;
}
int ia = 0, ir = 0;
while(ia < arrayContainer.getCardinality() && ir < runCount) {
int start = (this.getValue(ir));
int stop = start + (getLength(ir));
int ac = (arrayContainer.content[ia]);
if(ac < start) {
return false;
} else if (ac > stop) {
++ir;
} else {
++ia;
}
}
return ia == arrayContainer.getCardinality();
}
@Override
protected boolean contains(BitmapContainer bitmapContainer) {
final int cardinality = getCardinality();
if (bitmapContainer.getCardinality() != -1 && bitmapContainer.getCardinality() > cardinality) {
return false;
}
final int runCount = numberOfRuns();
char ib = 0, ir = 0;
while(ib < bitmapContainer.bitmap.length && ir < runCount) {
long w = bitmapContainer.bitmap[ib];
while (w != 0 && ir < runCount) {
int start = (getValue(ir));
int stop = start+ (getLength(ir));
long t = w & -w;
long r = ib * 64L + Long.numberOfTrailingZeros(w);
if (r < start) {
return false;
} else if(r > stop) {
++ir;
} else {
w ^= t;
}
}
if(w == 0) {
++ib;
} else {
return false;
}
}
if(ib < bitmapContainer.bitmap.length) {
for(; ib < bitmapContainer.bitmap.length ; ib++) {
if(bitmapContainer.bitmap[ib] != 0) {
return false;
}
}
}
return true;
}
// a very cheap check... if you have more than 4096, then you should use a bitmap container.
// this function avoids computing the cardinality
private Container convertToLazyBitmapIfNeeded() {
// when nbrruns exceed ArrayContainer.DEFAULT_MAX_SIZE, then we know it should be stored as a
// bitmap, always
if (this.nbrruns > ArrayContainer.DEFAULT_MAX_SIZE) {
BitmapContainer answer = new BitmapContainer();
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
Util.setBitmapRange(answer.bitmap, start, end);
}
answer.cardinality = -1;
return answer;
}
return this;
}
// Push all values length to the end of the array (resize array if needed)
private void copyToOffset(int offset) {
final int minCapacity = 2 * (offset + nbrruns);
if (valueslength.length < minCapacity) {
// expensive case where we need to reallocate
int newCapacity = valueslength.length;
while (newCapacity < minCapacity) {
newCapacity = (newCapacity == 0) ? DEFAULT_INIT_SIZE
: newCapacity < 64 ? newCapacity * 2
: newCapacity < 1024 ? newCapacity * 3 / 2 : newCapacity * 5 / 4;
}
char[] newvalueslength = new char[newCapacity];
copyValuesLength(this.valueslength, 0, newvalueslength, offset, nbrruns);
this.valueslength = newvalueslength;
} else {
// efficient case where we just copy
copyValuesLength(this.valueslength, 0, this.valueslength, offset, nbrruns);
}
}
private void copyValuesLength(char[] src, int srcIndex, char[] dst, int dstIndex, int length) {
System.arraycopy(src, 2 * srcIndex, dst, 2 * dstIndex, 2 * length);
}
private void decrementLength(int index) {
valueslength[2 * index + 1]--;// caller is responsible to ensure that value is non-zero
}
private void decrementValue(int index) {
valueslength[2 * index]--;
}
@Override
public void deserialize(DataInput in) throws IOException {
nbrruns = Character.reverseBytes(in.readChar());
if (valueslength.length < 2 * nbrruns) {
valueslength = new char[2 * nbrruns];
}
for (int k = 0; k < 2 * nbrruns; ++k) {
this.valueslength[k] = Character.reverseBytes(in.readChar());
}
}
// not actually used anywhere, but potentially useful
void ensureCapacity(int minNbRuns) {
final int minCapacity = 2 * minNbRuns;
if (valueslength.length < minCapacity) {
int newCapacity = valueslength.length;
while (newCapacity < minCapacity) {
newCapacity = (newCapacity == 0) ? DEFAULT_INIT_SIZE
: newCapacity < 64 ? newCapacity * 2
: newCapacity < 1024 ? newCapacity * 3 / 2 : newCapacity * 5 / 4;
}
char[] nv = new char[newCapacity];
copyValuesLength(valueslength, 0, nv, 0, nbrruns);
valueslength = nv;
}
}
@Override
public boolean equals(Object o) {
if (o instanceof RunContainer) {
return equals((RunContainer) o);
} else if (o instanceof ArrayContainer) {
return equals((ArrayContainer) o);
} else if (o instanceof Container) {
if (((Container) o).getCardinality() != this.getCardinality()) {
return false; // should be a frequent branch if they differ
}
// next bit could be optimized if needed:
CharIterator me = this.getCharIterator();
CharIterator you = ((Container) o).getCharIterator();
while (me.hasNext()) {
if (me.next() != you.next()) {
return false;
}
}
return true;
}
return false;
}
private boolean equals(RunContainer rc) {
return ArraysShim.equals(valueslength, 0, 2 * nbrruns,
rc.valueslength, 0, 2 * rc.nbrruns);
}
private boolean equals(ArrayContainer arrayContainer) {
int pos = 0;
for (char i = 0; i < nbrruns; ++i) {
char runStart = getValue(i);
int length = (getLength(i));
if (pos + length >= arrayContainer.getCardinality()) {
return false;
}
if (arrayContainer.content[pos] != runStart) {
return false;
}
if (arrayContainer.content[pos + length] != (char)((runStart) + length)) {
return false;
}
pos += length + 1;
}
return pos == arrayContainer.getCardinality();
}
@Override
public void fillLeastSignificant16bits(int[] x, int i, int mask) {
int pos = i;
for (int k = 0; k < this.nbrruns; ++k) {
final int limit = (this.getLength(k));
final int base = (this.getValue(k));
for (int le = 0; le <= limit; ++le) {
x[pos++] = (base + le) | mask;
}
}
}
@Override
public Container flip(char x) {
if (this.contains(x)) {
return this.remove(x);
} else {
return this.add(x);
}
}
@Override
public int getArraySizeInBytes() {
return 2 + 4 * this.nbrruns; // "array" includes its size
}
@Override
public int getCardinality() {
int sum = nbrruns;// lengths are returned -1
for (int k = 1; k < nbrruns * 2; k += 2) {
sum += valueslength[k];
}
return sum;
}
/**
* Gets the length of the run at the index.
* @param index the index of the run.
* @return the length of the run at the index.
* @throws ArrayIndexOutOfBoundsException if index is negative or larger than the index of the
* last run.
*/
public char getLength(int index) {
return valueslength[2 * index + 1];
}
@Override
public PeekableCharIterator getReverseCharIterator() {
return new ReverseRunContainerCharIterator(this);
}
@Override
public PeekableCharIterator getCharIterator() {
return new RunContainerCharIterator(this);
}
@Override
public PeekableCharRankIterator getCharRankIterator() {
return new RunContainerCharRankIterator(this);
}
@Override
public ContainerBatchIterator getBatchIterator() {
return new RunBatchIterator(this);
}
@Override
public int getSizeInBytes() {
return this.nbrruns * 4 + 4;
}
/**
* Gets the value of the first element of the run at the index.
* @param index the index of the run.
* @return the value of the first element of the run at the index.
* @throws ArrayIndexOutOfBoundsException if index is negative or larger than the index of the
* last run.
*/
public char getValue(int index) {
return valueslength[2 * index];
}
@Override
public int hashCode() {
int hash = 0;
for (int k = 0; k < nbrruns * 2; ++k) {
hash += 31 * hash + valueslength[k];
}
return hash;
}
@Override
public Container iadd(int begin, int end) {
// TODO: it might be better and simpler to do return
// toBitmapOrArrayContainer(getCardinality()).iadd(begin,end)
if(end == begin) {
return this;
}
if ((begin > end) || (end > (1 << 16))) {
throw new IllegalArgumentException("Invalid range [" + begin + "," + end + ")");
}
if (begin == end - 1) {
add((char) begin);
return this;
}
int bIndex = unsignedInterleavedBinarySearch(this.valueslength, 0, this.nbrruns, (char) begin);
int eIndex =
unsignedInterleavedBinarySearch(this.valueslength, 0, this.nbrruns, (char) (end - 1));
if (bIndex >= 0 && eIndex >= 0) {
mergeValuesLength(bIndex, eIndex);
return this;
} else if (bIndex >= 0) {
eIndex = -eIndex - 2;
if (canPrependValueLength(end - 1, eIndex + 1)) {
mergeValuesLength(bIndex, eIndex + 1);
return this;
}
appendValueLength(end - 1, eIndex);
mergeValuesLength(bIndex, eIndex);
return this;
} else if (eIndex >= 0) {
bIndex = -bIndex - 2;
if (bIndex >= 0) {
if (valueLengthContains(begin - 1, bIndex)) {
mergeValuesLength(bIndex, eIndex);
return this;
}
}
prependValueLength(begin, bIndex + 1);
mergeValuesLength(bIndex + 1, eIndex);
return this;
} else {
bIndex = -bIndex - 2;
eIndex = -eIndex - 2;
if (eIndex >= 0) {
if (bIndex >= 0) {
if (!valueLengthContains(begin - 1, bIndex)) {
if (bIndex == eIndex) {
if (canPrependValueLength(end - 1, eIndex + 1)) {
prependValueLength(begin, eIndex + 1);
return this;
}
makeRoomAtIndex(eIndex + 1);
setValue(eIndex + 1, (char) begin);
setLength(eIndex + 1, (char) (end - 1 - begin));
return this;
} else {
bIndex++;
prependValueLength(begin, bIndex);
}
}
} else {
bIndex = 0;
prependValueLength(begin, bIndex);
}
if (canPrependValueLength(end - 1, eIndex + 1)) {
mergeValuesLength(bIndex, eIndex + 1);
return this;
}
appendValueLength(end - 1, eIndex);
mergeValuesLength(bIndex, eIndex);
return this;
} else {
if (canPrependValueLength(end - 1, 0)) {
prependValueLength(begin, 0);
} else {
makeRoomAtIndex(0);
setValue(0, (char) begin);
setLength(0, (char) (end - 1 - begin));
}
return this;
}
}
}
@Override
public Container iand(ArrayContainer x) {
return and(x);
}
@Override
public Container iand(BitmapContainer x) {
return and(x);
}
@Override
public Container iand(RunContainer x) {
return and(x);
}
@Override
public Container iandNot(ArrayContainer x) {
return andNot(x);
}
@Override
public Container iandNot(BitmapContainer x) {
return andNot(x);
}
@Override
public Container iandNot(RunContainer x) {
return andNot(x);
}
Container ilazyor(ArrayContainer x) {
if (isFull()) {
return this; // this can sometimes solve a lot of computation!
}
return ilazyorToRun(x);
}
private Container ilazyorToRun(ArrayContainer x) {
if (isFull()) {
return full();
}
final int nbrruns = this.nbrruns;
final int offset = Math.max(nbrruns, x.getCardinality());
copyToOffset(offset);
int rlepos = 0;
this.nbrruns = 0;
PeekableCharIterator i = x.getCharIterator();
while (i.hasNext() && (rlepos < nbrruns)) {
if (getValue(rlepos + offset) - i.peekNext() <= 0) {
smartAppend(getValue(rlepos + offset), getLength(rlepos + offset));
rlepos++;
} else {
smartAppend(i.next());
}
}
if (i.hasNext()) {
/*
* if(this.nbrruns>0) { // this might be useful if the run container has just one very large
* run int lastval = (getValue(nbrruns + offset - 1)) +
* (getLength(nbrruns + offset - 1)) + 1; i.advanceIfNeeded((char)
* lastval); }
*/
while (i.hasNext()) {
smartAppend(i.next());
}
} else {
while (rlepos < nbrruns) {
smartAppend(getValue(rlepos + offset), getLength(rlepos + offset));
rlepos++;
}
}
return convertToLazyBitmapIfNeeded();
}
private void increaseCapacity() {
int newCapacity = (valueslength.length == 0) ? DEFAULT_INIT_SIZE
: valueslength.length < 64 ? valueslength.length * 2
: valueslength.length < 1024 ? valueslength.length * 3 / 2
: valueslength.length * 5 / 4;
char[] nv = new char[newCapacity];
System.arraycopy(valueslength, 0, nv, 0, 2 * nbrruns);
valueslength = nv;
}
private void incrementLength(int index) {
valueslength[2 * index + 1]++;
}
private void incrementValue(int index) {
valueslength[2 * index]++;
}
// To set the first value of a value length
private void initValueLength(int value, int index) {
int initialValue = (getValue(index));
int length = (getLength(index));
setValue(index, (char) (value));
setLength(index, (char) (length - (value - initialValue)));
}
@Override
public Container inot(int rangeStart, int rangeEnd) {
if (rangeEnd <= rangeStart) {
return this;
}
// TODO: write special case code for rangeStart=0; rangeEnd=65535
// a "sliding" effect where each range records the gap adjacent it
// can probably be quite fast. Probably have 2 cases: start with a
// 0 run vs start with a 1 run. If you both start and end with 0s,
// you will require room for expansion.
// the +1 below is needed in case the valueslength.length is odd
if (valueslength.length <= 2 * nbrruns + 1) {
// no room for expansion
// analyze whether this is a case that will require expansion (that we cannot do)
// this is a bit costly now (4 "contains" checks)
boolean lastValueBeforeRange = false;
boolean firstValueInRange;
boolean lastValueInRange;
boolean firstValuePastRange = false;
// contains is based on a binary search and is hopefully fairly fast.
// however, one binary search could *usually* suffice to find both
// lastValueBeforeRange AND firstValueInRange. ditto for
// lastVaueInRange and firstValuePastRange
// find the start of the range
if (rangeStart > 0) {
lastValueBeforeRange = contains((char) (rangeStart - 1));
}
firstValueInRange = contains((char) rangeStart);
if (lastValueBeforeRange == firstValueInRange) {
// expansion is required if also lastValueInRange==firstValuePastRange
// tougher to optimize out, but possible.
lastValueInRange = contains((char) (rangeEnd - 1));
if (rangeEnd != 65536) {
firstValuePastRange = contains((char) rangeEnd);
}
// there is definitely one more run after the operation.
if (lastValueInRange == firstValuePastRange) {
return not(rangeStart, rangeEnd); // can't do in-place: true space limit
}
}
}
// either no expansion required, or we have room to handle any required expansion for it.
// remaining code is just a minor variation on not()
int myNbrRuns = nbrruns;
RunContainer ans = this; // copy on top of self.
int k = 0;
ans.nbrruns = 0; // losing this.nbrruns, which is stashed in myNbrRuns.
// could try using unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, rangeStart) instead
// of sequential scan
// to find the starting location
for (; (k < myNbrRuns) && ((this.getValue(k)) < rangeStart); ++k) {
// since it is atop self, there is no copying needed
// ans.valueslength[2 * k] = this.valueslength[2 * k];
// ans.valueslength[2 * k + 1] = this.valueslength[2 * k + 1];
ans.nbrruns++;
}
// We will work left to right, with a read pointer that always stays
// left of the write pointer. However, we need to give the read pointer a head start.
// use local variables so we are always reading 1 location ahead.
char bufferedValue = 0, bufferedLength = 0; // 65535 start and 65535 length would be illegal,
// could use as sentinel
char nextValue = 0, nextLength = 0;
if (k < myNbrRuns) { // prime the readahead variables
bufferedValue = getValue(k);
bufferedLength = getLength(k);
}
ans.smartAppendExclusive((char) rangeStart, (char) (rangeEnd - rangeStart - 1));
for (; k < myNbrRuns; ++k) {
if (ans.nbrruns > k + 1) {
throw new RuntimeException(
"internal error in inot, writer has overtaken reader!! " + k + " " + ans.nbrruns);
}
if (k + 1 < myNbrRuns) {
nextValue = getValue(k + 1); // readahead for next iteration
nextLength = getLength(k + 1);
}
ans.smartAppendExclusive(bufferedValue, bufferedLength);
bufferedValue = nextValue;
bufferedLength = nextLength;
}
// the number of runs can increase by one, meaning (rarely) a bitmap will become better
// or the cardinality can decrease by a lot, making an array better
return ans.toEfficientContainer();
}
@Override
public boolean intersects(ArrayContainer x) {
if (this.nbrruns == 0) {
return false;
}
int rlepos = 0;
int arraypos = 0;
int rleval = this.getValue(rlepos);
int rlelength = this.getLength(rlepos);
while (arraypos < x.cardinality) {
int arrayval = (x.content[arraypos]);
while (rleval + rlelength < arrayval) {// this will frequently be false
++rlepos;
if (rlepos == this.nbrruns) {
return false;
}
rleval = this.getValue(rlepos);
rlelength = this.getLength(rlepos);
}
if (rleval > arrayval) {
arraypos = Util.advanceUntil(x.content, arraypos, x.cardinality, this.getValue(rlepos));
} else {
return true;
}
}
return false;
}
@Override
public boolean intersects(BitmapContainer x) {
for (int run = 0; run < this.nbrruns; ++run) {
int runStart = this.getValue(run);
int runEnd = runStart + this.getLength(run);
if (x.intersects(runStart, runEnd + 1)) {
return true;
}
}
return false;
}
@Override
public boolean intersects(RunContainer x) {
int rlepos = 0;
int xrlepos = 0;
int start = this.getValue(rlepos);
int end = start + this.getLength(rlepos) + 1;
int xstart = x.getValue(xrlepos);
int xend = xstart + x.getLength(xrlepos) + 1;
while (rlepos < this.nbrruns && xrlepos < x.nbrruns) {
if (end <= xstart) {
if (ENABLE_GALLOPING_AND) {
rlepos = skipAhead(this, rlepos, xstart); // skip over runs until we have end > xstart (or
// rlepos is advanced beyond end)
} else {
++rlepos;
}
if (rlepos < this.nbrruns) {
start = (this.getValue(rlepos));
end = start + (this.getLength(rlepos)) + 1;
}
} else if (xend <= start) {
// exit the second run
if (ENABLE_GALLOPING_AND) {
xrlepos = skipAhead(x, xrlepos, start);
} else {
++xrlepos;
}
if (xrlepos < x.nbrruns) {
xstart = (x.getValue(xrlepos));
xend = xstart + (x.getLength(xrlepos)) + 1;
}
} else {// they overlap
return true;
}
}
return false;
}
@Override
public boolean intersects(int minimum, int supremum) {
if((minimum < 0) || (supremum < minimum) || (supremum > (1<<16))) {
throw new RuntimeException("This should never happen (bug).");
}
for (int i = 0; i < numberOfRuns(); ++i) {
int runFirstValue = getValue(i);
int runLastValue = (char) (runFirstValue + getLength(i)) + 1;
if (supremum > runFirstValue && minimum < runLastValue) {
return true;
}
}
return false;
}
@Override
public Container ior(ArrayContainer x) {
if (isFull()) {
return this;
}
final int nbrruns = this.nbrruns;
final int offset = Math.max(nbrruns, x.getCardinality());
copyToOffset(offset);
int rlepos = 0;
this.nbrruns = 0;
PeekableCharIterator i = x.getCharIterator();
while (i.hasNext() && (rlepos < nbrruns)) {
if (getValue(rlepos + offset) - i.peekNext() <= 0) {
smartAppend(getValue(rlepos + offset), getLength(rlepos + offset));
rlepos++;
} else {
smartAppend(i.next());
}
}
if (i.hasNext()) {
/*
* if(this.nbrruns>0) { // this might be useful if the run container has just one very large
* run int lastval = (getValue(nbrruns + offset - 1)) +
* (getLength(nbrruns + offset - 1)) + 1; i.advanceIfNeeded((char)
* lastval); }
*/
while (i.hasNext()) {
smartAppend(i.next());
}
} else {
while (rlepos < nbrruns) {
smartAppend(getValue(rlepos + offset), getLength(rlepos + offset));
rlepos++;
}
}
return toEfficientContainer();
}
@Override
public Container ior(BitmapContainer x) {
if (isFull()) {
return this;
}
return or(x);
}
@Override
public Container ior(RunContainer x) {
if (isFull()) {
return this;
}
final int nbrruns = this.nbrruns;
final int xnbrruns = x.nbrruns;
final int offset = Math.max(nbrruns, xnbrruns);
// Push all values length to the end of the array (resize array if needed)
copyToOffset(offset);
// Aggregate and store the result at the beginning of the array
this.nbrruns = 0;
int rlepos = 0;
int xrlepos = 0;
// Add values length (smaller first)
while ((rlepos < nbrruns) && (xrlepos < xnbrruns)) {
final char value = this.getValue(offset + rlepos);
final char xvalue = x.getValue(xrlepos);
final char length = this.getLength(offset + rlepos);
final char xlength = x.getLength(xrlepos);
if (value - xvalue <= 0) {
this.smartAppend(value, length);
++rlepos;
} else {
this.smartAppend(xvalue, xlength);
++xrlepos;
}
}
while (rlepos < nbrruns) {
this.smartAppend(this.getValue(offset + rlepos), this.getLength(offset + rlepos));
++rlepos;
}
while (xrlepos < xnbrruns) {
this.smartAppend(x.getValue(xrlepos), x.getLength(xrlepos));
++xrlepos;
}
return this.toBitmapIfNeeded();
}
@Override
public Container iremove(int begin, int end) {
// TODO: it might be better and simpler to do return
// toBitmapOrArrayContainer(getCardinality()).iremove(begin,end)
if(end == begin) {
return this;
}
if ((begin > end) || (end > (1 << 16))) {
throw new IllegalArgumentException("Invalid range [" + begin + "," + end + ")");
}
if (begin == end - 1) {
remove((char) begin);
return this;
}
int bIndex = unsignedInterleavedBinarySearch(this.valueslength, 0, this.nbrruns, (char) begin);
int eIndex =
unsignedInterleavedBinarySearch(this.valueslength, 0, this.nbrruns, (char) (end - 1));
// note, eIndex is looking for (end-1)
if (bIndex >= 0) { // beginning marks beginning of a run
if (eIndex < 0) {
eIndex = -eIndex - 2;
}
// eIndex could be a run that begins exactly at "end"
// or it might be an earlier run
// if the end is before the first run, we'd have eIndex==-1. But bIndex makes this impossible.
if (valueLengthContains(end, eIndex)) {
initValueLength(end, eIndex); // there is something left in the run
recoverRoomsInRange(bIndex - 1, eIndex - 1);
} else {
recoverRoomsInRange(bIndex - 1, eIndex); // nothing left in the run
}
} else if (eIndex >= 0) {
// start does not coincide to a run start, but end does.
bIndex = -bIndex - 2;
if (bIndex >= 0) {
if (valueLengthContains(begin, bIndex)) {
closeValueLength(begin - 1, bIndex);
}
}
// last run is one shorter
if (getLength(eIndex) == 0) {// special case where we remove last run
recoverRoomsInRange(eIndex - 1, eIndex);
} else {
incrementValue(eIndex);
decrementLength(eIndex);
}
recoverRoomsInRange(bIndex, eIndex - 1);
} else {
bIndex = -bIndex - 2;
eIndex = -eIndex - 2;
if (eIndex >= 0) { // end-1 is not before first run.
if (bIndex >= 0) { // nor is begin
if (bIndex == eIndex) { // all removal nested properly between
// one run start and the next
if (valueLengthContains(begin, bIndex)) {
if (valueLengthContains(end, eIndex)) {
// proper nesting within a run, generates 2 sub-runs
makeRoomAtIndex(bIndex);
closeValueLength(begin - 1, bIndex);
initValueLength(end, bIndex + 1);
return this;
}
// removed area extends beyond run.
closeValueLength(begin - 1, bIndex);
}
} else { // begin in one run area, end in a later one.
if (valueLengthContains(begin, bIndex)) {
closeValueLength(begin - 1, bIndex);
// this cannot leave the bIndex run empty.
}
if (valueLengthContains(end, eIndex)) {
// there is additional stuff in the eIndex run
initValueLength(end, eIndex);
eIndex--;
} // run ends at or before the range being removed, can delete it
recoverRoomsInRange(bIndex, eIndex);
}
} else {
// removed range begins before the first run
if (valueLengthContains(end, eIndex)) { // had been end-1
initValueLength(end, eIndex);
recoverRoomsInRange(bIndex, eIndex - 1);
} else { // removed range includes all the last run
recoverRoomsInRange(bIndex, eIndex);
}
}
} // eIndex == -1: whole range is before first run, nothing to delete...
}
return this;
}
@Override
public boolean isFull() {
return (this.nbrruns == 1) && (this.getValue(0) == 0) && (this.getLength(0) == 0xFFFF);
}
public static RunContainer full() {
return new RunContainer(0, 1 << 16);
}
@Override
public Iterator iterator() {
final CharIterator i = getCharIterator();
return new Iterator() {
@Override
public boolean hasNext() {
return i.hasNext();
}
@Override
public Character next() {
return i.next();
}
@Override
public void remove() {
i.remove();
}
};
}
@Override
public Container ixor(ArrayContainer x) {
return xor(x);
}
@Override
public Container ixor(BitmapContainer x) {
return xor(x);
}
@Override
public Container ixor(RunContainer x) {
return xor(x);
}
private RunContainer lazyandNot(ArrayContainer x) {
if (x.isEmpty()) {
return this;
}
RunContainer answer = new RunContainer(new char[2 * (this.nbrruns + x.cardinality)], 0);
int rlepos = 0;
int xrlepos = 0;
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
int xstart = (x.content[xrlepos]);
while ((rlepos < this.nbrruns) && (xrlepos < x.cardinality)) {
if (end <= xstart) {
// output the first run
answer.valueslength[2 * answer.nbrruns] = (char) start;
answer.valueslength[2 * answer.nbrruns + 1] = (char) (end - start - 1);
answer.nbrruns++;
rlepos++;
if (rlepos < this.nbrruns) {
start = (this.getValue(rlepos));
end = start + (this.getLength(rlepos)) + 1;
}
} else if (xstart + 1 <= start) {
// exit the second run
xrlepos++;
if (xrlepos < x.cardinality) {
xstart = (x.content[xrlepos]);
}
} else {
if (start < xstart) {
answer.valueslength[2 * answer.nbrruns] = (char) start;
answer.valueslength[2 * answer.nbrruns + 1] = (char) (xstart - start - 1);
answer.nbrruns++;
}
if (xstart + 1 < end) {
start = xstart + 1;
} else {
rlepos++;
if (rlepos < this.nbrruns) {
start = (this.getValue(rlepos));
end = start + (this.getLength(rlepos)) + 1;
}
}
}
}
if (rlepos < this.nbrruns) {
answer.valueslength[2 * answer.nbrruns] = (char) start;
answer.valueslength[2 * answer.nbrruns + 1] = (char) (end - start - 1);
answer.nbrruns++;
rlepos++;
if (rlepos < this.nbrruns) {
System.arraycopy(this.valueslength, 2 * rlepos, answer.valueslength, 2 * answer.nbrruns,
2 * (this.nbrruns - rlepos));
answer.nbrruns = answer.nbrruns + this.nbrruns - rlepos;
}
}
return answer;
}
protected Container lazyor(ArrayContainer x) {
return lazyorToRun(x);
}
private Container lazyorToRun(ArrayContainer x) {
if (isFull()) {
return full();
}
// TODO: should optimize for the frequent case where we have a single run
RunContainer answer = new RunContainer(new char[2 * (this.nbrruns + x.getCardinality())], 0);
int rlepos = 0;
PeekableCharIterator i = x.getCharIterator();
while (i.hasNext() && (rlepos < this.nbrruns)) {
if (getValue(rlepos) - i.peekNext() <= 0) {
answer.smartAppend(getValue(rlepos), getLength(rlepos));
// in theory, this next code could help, in practice it doesn't.
/*
* int lastval = (answer.getValue(answer.nbrruns - 1)) +
* (answer.getLength(answer.nbrruns - 1)) + 1; i.advanceIfNeeded((char)
* lastval);
*/
rlepos++;
} else {
answer.smartAppend(i.next());
}
}
if (i.hasNext()) {
/*
* if(answer.nbrruns>0) { this might be useful if the run container has just one very large
* run int lastval = (answer.getValue(answer.nbrruns - 1)) +
* (answer.getLength(answer.nbrruns - 1)) + 1; i.advanceIfNeeded((char)
* lastval); }
*/
while (i.hasNext()) {
answer.smartAppend(i.next());
}
} else {
while (rlepos < this.nbrruns) {
answer.smartAppend(getValue(rlepos), getLength(rlepos));
rlepos++;
}
}
if (answer.isFull()) {
return full();
}
return answer.convertToLazyBitmapIfNeeded();
}
private Container lazyxor(ArrayContainer x) {
if (x.isEmpty()) {
return this;
}
if (this.nbrruns == 0) {
return x;
}
RunContainer answer = new RunContainer(new char[2 * (this.nbrruns + x.getCardinality())], 0);
int rlepos = 0;
CharIterator i = x.getCharIterator();
char cv = i.next();
while (true) {
if (getValue(rlepos) < cv) {
answer.smartAppendExclusive(getValue(rlepos), getLength(rlepos));
rlepos++;
if (rlepos == this.nbrruns) {
answer.smartAppendExclusive(cv);
while (i.hasNext()) {
answer.smartAppendExclusive(i.next());
}
break;
}
} else {
answer.smartAppendExclusive(cv);
if (!i.hasNext()) {
while (rlepos < this.nbrruns) {
answer.smartAppendExclusive(getValue(rlepos), getLength(rlepos));
rlepos++;
}
break;
} else {
cv = i.next();
}
}
}
return answer;
}
@Override
public Container limit(int maxcardinality) {
if (maxcardinality >= getCardinality()) {
return clone();
}
int r;
int cardinality = 0;
for (r = 0; r < this.nbrruns; ++r) {
cardinality += (getLength(r)) + 1;
if (maxcardinality <= cardinality) {
break;
}
}
RunContainer rc = new RunContainer(Arrays.copyOf(valueslength, 2 * (r+1)), r+1);
rc.setLength(r ,
(char) ((rc.getLength(r)) - cardinality + maxcardinality));
return rc;
}
private void makeRoomAtIndex(int index) {
if (2 * (nbrruns + 1) > valueslength.length) {
increaseCapacity();
}
copyValuesLength(valueslength, index, valueslength, index + 1, nbrruns - index);
nbrruns++;
}
// To merge values length from begin(inclusive) to end(inclusive)
private void mergeValuesLength(int begin, int end) {
if (begin < end) {
int bValue = (getValue(begin));
int eValue = (getValue(end));
int eLength = (getLength(end));
int newLength = eValue - bValue + eLength;
setLength(begin, (char) newLength);
recoverRoomsInRange(begin, end);
}
}
@Override
public Container not(int rangeStart, int rangeEnd) {
if (rangeEnd <= rangeStart) {
return this.clone();
}
RunContainer ans = new RunContainer(nbrruns + 1);
int k = 0;
for (; (k < this.nbrruns) && ((this.getValue(k)) < rangeStart); ++k) {
ans.valueslength[2 * k] = this.valueslength[2 * k];
ans.valueslength[2 * k + 1] = this.valueslength[2 * k + 1];
ans.nbrruns++;
}
ans.smartAppendExclusive((char) rangeStart, (char) (rangeEnd - rangeStart - 1));
for (; k < this.nbrruns; ++k) {
ans.smartAppendExclusive(getValue(k), getLength(k));
}
// the number of runs can increase by one, meaning (rarely) a bitmap will become better
// or the cardinality can decrease by a lot, making an array better
return ans.toEfficientContainer();
}
@Override
public int numberOfRuns() {
return nbrruns;
}
@Override
public Container or(ArrayContainer x) {
// we guess that, often, the result will still be efficiently expressed as a run container
return lazyor(x).repairAfterLazy();
}
@Override
public Container or(BitmapContainer x) {
if (isFull()) {
return full();
}
// could be implemented as return toTemporaryBitmap().ior(x);
BitmapContainer answer = x.clone();
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
int prevOnesInRange = answer.cardinalityInRange(start, end);
Util.setBitmapRange(answer.bitmap, start, end);
answer.updateCardinality(prevOnesInRange, end - start);
}
if (answer.isFull()) {
return full();
}
return answer;
}
@Override
public Container or(RunContainer x) {
if (isFull()) {
return full();
}
if (x.isFull()) {
return full(); // cheap case that can save a lot of computation
}
// we really ought to optimize the rest of the code for the frequent case where there is a
// single run
RunContainer answer = new RunContainer(new char[2 * (this.nbrruns + x.nbrruns)], 0);
int rlepos = 0;
int xrlepos = 0;
while ((xrlepos < x.nbrruns) && (rlepos < this.nbrruns)) {
if (getValue(rlepos) - x.getValue(xrlepos) <= 0) {
answer.smartAppend(getValue(rlepos), getLength(rlepos));
rlepos++;
} else {
answer.smartAppend(x.getValue(xrlepos), x.getLength(xrlepos));
xrlepos++;
}
}
while (xrlepos < x.nbrruns) {
answer.smartAppend(x.getValue(xrlepos), x.getLength(xrlepos));
xrlepos++;
}
while (rlepos < this.nbrruns) {
answer.smartAppend(getValue(rlepos), getLength(rlepos));
rlepos++;
}
if (answer.isFull()) {
return full();
}
return answer.toBitmapIfNeeded();
}
// Prepend a value length with all values starting from a given value
private void prependValueLength(int value, int index) {
int initialValue = (getValue(index));
int length = (getLength(index));
setValue(index, (char) value);
setLength(index, (char) (initialValue - value + length));
}
@Override
public int rank(char lowbits) {
int answer = 0;
for (int k = 0; k < this.nbrruns; ++k) {
int value = (getValue(k));
int length = (getLength(k));
if ((int) (lowbits) < value) {
return answer;
} else if (value + length + 1 > (int) (lowbits)) {
return answer + (int) (lowbits) - value + 1;
}
answer += length + 1;
}
return answer;
}
@Override
public void readExternal(ObjectInput in) throws IOException {
deserialize(in);
}
private void recoverRoomAtIndex(int index) {
copyValuesLength(valueslength, index + 1, valueslength, index, nbrruns - index - 1);
nbrruns--;
}
// To recover rooms between begin(exclusive) and end(inclusive)
private void recoverRoomsInRange(int begin, int end) {
if (end + 1 < this.nbrruns) {
copyValuesLength(this.valueslength, end + 1, this.valueslength, begin + 1,
this.nbrruns - 1 - end);
}
this.nbrruns -= end - begin;
}
@Override
public Container remove(int begin, int end) {
RunContainer rc = (RunContainer) clone();
return rc.iremove(begin, end);
}
@Override
public Container remove(char x) {
int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, x);
if (index >= 0) {
if (getLength(index) == 0) {
recoverRoomAtIndex(index);
} else {
incrementValue(index);
decrementLength(index);
}
return this;// already there
}
index = -index - 2;// points to preceding value, possibly -1
if (index >= 0) {// possible match
int offset = (x) - (getValue(index));
int le = (getLength(index));
if (offset < le) {
// need to break in two
this.setLength(index, (char) (offset - 1));
// need to insert
int newvalue = (x) + 1;
int newlength = le - offset - 1;
makeRoomAtIndex(index + 1);
this.setValue(index + 1, (char) newvalue);
this.setLength(index + 1, (char) newlength);
return this;
} else if (offset == le) {
decrementLength(index);
}
}
// no match
return this;
}
@Override
public Container repairAfterLazy() {
return toEfficientContainer();
}
/**
* Convert to Array or Bitmap container if the serialized form would be shorter. Exactly the same
* functionality as toEfficientContainer.
*/
@Override
public Container runOptimize() {
return toEfficientContainer();
}
@Override
public char select(int j) {
int offset = 0;
for (int k = 0; k < this.nbrruns; ++k) {
int nextOffset = offset + (getLength(k)) + 1;
if (nextOffset > j) {
return (char) (getValue(k) + (j - offset));
}
offset = nextOffset;
}
throw new IllegalArgumentException(
"Cannot select " + j + " since cardinality is " + getCardinality());
}
@Override
public void serialize(DataOutput out) throws IOException {
writeArray(out);
}
@Override
public int serializedSizeInBytes() {
return serializedSizeInBytes(nbrruns);
}
private void setLength(int index, char v) {
setLength(valueslength, index, v);
}
private void setLength(char[] valueslength, int index, char v) {
valueslength[2 * index + 1] = v;
}
private void setValue(int index, char v) {
setValue(valueslength, index, v);
}
private void setValue(char[] valueslength, int index, char v) {
valueslength[2 * index] = v;
}
// bootstrapping (aka "galloping") binary search. Always skips at least one.
// On our "real data" benchmarks, enabling galloping is a minor loss
// .."ifdef ENABLE_GALLOPING_AND" :)
private int skipAhead(RunContainer skippingOn, int pos, int targetToExceed) {
int left = pos;
int span = 1;
int probePos;
int end;
// jump ahead to find a spot where end > targetToExceed (if it exists)
do {
probePos = left + span;
if (probePos >= skippingOn.nbrruns - 1) {
// expect it might be quite common to find the container cannot be advanced as far as
// requested. Optimize for it.
probePos = skippingOn.nbrruns - 1;
end = (skippingOn.getValue(probePos))
+ (skippingOn.getLength(probePos)) + 1;
if (end <= targetToExceed) {
return skippingOn.nbrruns;
}
}
end = (skippingOn.getValue(probePos))
+ (skippingOn.getLength(probePos)) + 1;
span *= 2;
} while (end <= targetToExceed);
int right = probePos;
// left and right are both valid positions. Invariant: left <= targetToExceed && right >
// targetToExceed
// do a binary search to discover the spot where left and right are separated by 1, and
// invariant is maintained.
while (right - left > 1) {
int mid = (right + left) / 2;
int midVal = (skippingOn.getValue(mid))
+ (skippingOn.getLength(mid)) + 1;
if (midVal > targetToExceed) {
right = mid;
} else {
left = mid;
}
}
return right;
}
private void smartAppend(char val) {
int oldend;
if ((nbrruns == 0)
|| (val > (oldend = (valueslength[2 * (nbrruns - 1)])
+ (valueslength[2 * (nbrruns - 1) + 1])) + 1)) { // we add a new one
valueslength[2 * nbrruns] = val;
valueslength[2 * nbrruns + 1] = 0;
nbrruns++;
return;
}
if (val == (char) (oldend + 1)) { // we merge
valueslength[2 * (nbrruns - 1) + 1]++;
}
}
void smartAppend(char start, char length) {
int oldend;
if ((nbrruns == 0) || ((start) > (oldend =
(getValue(nbrruns - 1)) + (getLength(nbrruns - 1)))
+ 1)) { // we add a new one
ensureCapacity(nbrruns + 1);
valueslength[2 * nbrruns] = start;
valueslength[2 * nbrruns + 1] = length;
nbrruns++;
return;
}
int newend = (start) + length + 1;
if (newend > oldend) { // we merge
setLength(nbrruns - 1, (char) (newend - 1 - (getValue(nbrruns - 1))));
}
}
private void smartAppendExclusive(char val) {
int oldend;
if ((nbrruns == 0)
|| (val > (oldend = getValue(nbrruns - 1)
+ getLength(nbrruns - 1) + 1))) { // we add a new one
valueslength[2 * nbrruns] = val;
valueslength[2 * nbrruns + 1] = 0;
nbrruns++;
return;
}
// We have that val <= oldend.
if (oldend == val) {
// we merge
valueslength[2 * (nbrruns - 1) + 1]++;
return;
}
// We have that val < oldend.
int newend = val + 1;
// We have that newend = val + 1 and val < oldend.
// so newend <= oldend.
if (val == getValue(nbrruns - 1)) {
// we wipe out previous
if (newend != oldend) {
setValue(nbrruns - 1, (char) newend);
setLength(nbrruns - 1, (char) (oldend - newend - 1));
return;
} else { // they cancel out
nbrruns--;
return;
}
}
setLength(nbrruns - 1, (char) (val - getValue(nbrruns - 1) - 1));
if (newend < oldend) {
setValue(nbrruns, (char) newend);
setLength(nbrruns, (char) (oldend - newend - 1));
nbrruns++;
} // otherwise newend == oldend
}
private void smartAppendExclusive(char start, char length) {
int oldend;
if ((nbrruns == 0)
|| (start > (oldend = (getValue(nbrruns - 1))
+ (getLength(nbrruns - 1)) + 1))) { // we add a new one
valueslength[2 * nbrruns] = start;
valueslength[2 * nbrruns + 1] = length;
nbrruns++;
return;
}
if (oldend == start) {
// we merge
valueslength[2 * (nbrruns - 1) + 1] += length + 1;
return;
}
int newend = start + length + 1;
if (start == (getValue(nbrruns - 1))) {
// we wipe out previous
if (newend < oldend) {
setValue(nbrruns - 1, (char) newend);
setLength(nbrruns - 1, (char) (oldend - newend - 1));
return;
} else if (newend > oldend) {
setValue(nbrruns - 1, (char) oldend);
setLength(nbrruns - 1, (char) (newend - oldend - 1));
return;
} else { // they cancel out
nbrruns--;
return;
}
}
setLength(nbrruns - 1, (char) (start - (getValue(nbrruns - 1)) - 1));
if (newend < oldend) {
setValue(nbrruns, (char) newend);
setLength(nbrruns, (char) (oldend - newend - 1));
nbrruns++;
} else if (newend > oldend) {
setValue(nbrruns, (char) oldend);
setLength(nbrruns, (char) (newend - oldend - 1));
nbrruns++;
}
}
// convert to bitmap *if needed* (useful if you know it can't be an array)
private Container toBitmapIfNeeded() {
int sizeAsRunContainer = RunContainer.serializedSizeInBytes(this.nbrruns);
int sizeAsBitmapContainer = BitmapContainer.serializedSizeInBytes(0);
if (sizeAsBitmapContainer > sizeAsRunContainer) {
return this;
}
return toBitmapContainer();
}
/**
* Convert the container to either a Bitmap or an Array Container, depending on the cardinality.
*
* @param card the current cardinality
* @return new container
*/
Container toBitmapOrArrayContainer(int card) {
// int card = this.getCardinality();
if (card <= ArrayContainer.DEFAULT_MAX_SIZE) {
ArrayContainer answer = new ArrayContainer(card);
answer.cardinality = 0;
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int runStart = (this.getValue(rlepos));
int runEnd = runStart + (this.getLength(rlepos));
for (int runValue = runStart; runValue <= runEnd; ++runValue) {
answer.content[answer.cardinality++] = (char) runValue;
}
}
return answer;
}
BitmapContainer answer = new BitmapContainer();
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
Util.setBitmapRange(answer.bitmap, start, end);
}
answer.cardinality = card;
return answer;
}
// convert to bitmap or array *if needed*
private Container toEfficientContainer() {
int sizeAsRunContainer = RunContainer.serializedSizeInBytes(this.nbrruns);
int sizeAsBitmapContainer = BitmapContainer.serializedSizeInBytes(0);
int card = this.getCardinality();
int sizeAsArrayContainer = ArrayContainer.serializedSizeInBytes(card);
if (sizeAsRunContainer <= Math.min(sizeAsBitmapContainer, sizeAsArrayContainer)) {
return this;
}
return toBitmapOrArrayContainer(card);
}
@Override
public MappeableContainer toMappeableContainer() {
return new MappeableRunContainer(this);
}
/**
* Return the content of this container as a ShortBuffer. This creates a copy and might be
* relatively slow.
*
* @return the ShortBuffer
*/
public CharBuffer toCharBuffer() {
CharBuffer sb = CharBuffer.allocate(this.nbrruns * 2);
sb.put(this.valueslength, 0, this.nbrruns * 2);
return sb;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder("[]".length() + "-123456789,".length() * nbrruns);
for (int k = 0; k < this.nbrruns; ++k) {
sb.append('[');
sb.append((int)(this.getValue(k)));
sb.append(',');
sb.append((this.getValue(k)) + (this.getLength(k)));
sb.append(']');
}
return sb.toString();
}
@Override
public void trim() {
if (valueslength.length == 2 * nbrruns) {
return;
}
valueslength = Arrays.copyOf(valueslength, 2 * nbrruns);
}
// To check if a value length contains a given value
private boolean valueLengthContains(int value, int index) {
int initialValue = (getValue(index));
int length = (getLength(index));
return value <= initialValue + length;
}
@Override
public void writeArray(DataOutput out) throws IOException {
out.writeShort(Character.reverseBytes((char) this.nbrruns));
for (int k = 0; k < 2 * this.nbrruns; ++k) {
out.writeShort(Character.reverseBytes(this.valueslength[k]));
}
}
@Override
public void writeArray(ByteBuffer buffer) {
assert buffer.order() == ByteOrder.LITTLE_ENDIAN;
CharBuffer buf = buffer.asCharBuffer();
buf.put((char)nbrruns);
buf.put(valueslength, 0, nbrruns * 2);
int bytesWritten = (nbrruns * 2 + 1) * 2;
buffer.position(buffer.position() + bytesWritten);
}
@Override
public void writeExternal(ObjectOutput out) throws IOException {
serialize(out);
}
@Override
public Container xor(ArrayContainer x) {
// if the cardinality of the array is small, guess that the output will still be a run container
final int arbitrary_threshold = 32; // 32 is arbitrary here
if (x.getCardinality() < arbitrary_threshold) {
return lazyxor(x).repairAfterLazy();
}
// otherwise, we expect the output to be either an array or bitmap
final int card = getCardinality();
if (card <= ArrayContainer.DEFAULT_MAX_SIZE) {
// if the cardinality is small, we construct the solution in place
return x.xor(this.getCharIterator());
}
// otherwise, we generate a bitmap (even if runcontainer would be better)
return toBitmapOrArrayContainer(card).ixor(x);
}
@Override
public Container xor(BitmapContainer x) {
// could be implemented as return toTemporaryBitmap().ixor(x);
BitmapContainer answer = x.clone();
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
int prevOnes = answer.cardinalityInRange(start, end);
Util.flipBitmapRange(answer.bitmap, start, end);
answer.updateCardinality(prevOnes, end - start - prevOnes);
}
if (answer.getCardinality() > ArrayContainer.DEFAULT_MAX_SIZE) {
return answer;
} else {
return answer.toArrayContainer();
}
}
@Override
public Container xor(RunContainer x) {
if (x.nbrruns == 0) {
return this.clone();
}
if (this.nbrruns == 0) {
return x.clone();
}
RunContainer answer = new RunContainer(new char[2 * (this.nbrruns + x.nbrruns)], 0);
int rlepos = 0;
int xrlepos = 0;
while (true) {
if (getValue(rlepos) < x.getValue(xrlepos)) {
answer.smartAppendExclusive(getValue(rlepos), getLength(rlepos));
rlepos++;
if (rlepos == this.nbrruns) {
while (xrlepos < x.nbrruns) {
answer.smartAppendExclusive(x.getValue(xrlepos), x.getLength(xrlepos));
xrlepos++;
}
break;
}
} else {
answer.smartAppendExclusive(x.getValue(xrlepos), x.getLength(xrlepos));
xrlepos++;
if (xrlepos == x.nbrruns) {
while (rlepos < this.nbrruns) {
answer.smartAppendExclusive(getValue(rlepos), getLength(rlepos));
rlepos++;
}
break;
}
}
}
return answer.toEfficientContainer();
}
@Override
public void forEach(char msb, IntConsumer ic) {
int high = msb << 16;
for(int k = 0; k < this.nbrruns; ++k) {
int base = this.getValue(k) | high;
int le = this.getLength(k);
for(int l = base; l - le <= base; ++l) {
ic.accept(l);
}
}
}
@Override
public void forAll(int offset, final RelativeRangeConsumer rrc) {
int next = 0;
for (int run = 0; run < nbrruns; run++) {
int runPos = run << 1;
char runStart = valueslength[runPos];
char runLength = valueslength[runPos + 1];
if (next < runStart) {
// fill in missing values until runStart
rrc.acceptAllAbsent(offset + next, offset + runStart);
}
rrc.acceptAllPresent(offset + runStart, offset + runStart + runLength + 1);
next = runStart + runLength + 1;
}
if (next <= Character.MAX_VALUE) {
// fill in the remaining values until end
rrc.acceptAllAbsent(offset + next, offset + Character.MAX_VALUE + 1);
}
}
@Override
public void forAllFrom(char startValue, final RelativeRangeConsumer rrc) {
int startOffset = startValue;
int next = startValue;
for (int run = 0; run < nbrruns; run++) {
int runPos = run << 1;
char runStart = valueslength[runPos];
char runLength = valueslength[runPos + 1];
int runEnd = runStart + runLength;
if (runEnd < startValue) {
// skip forward
continue;
}
if (runStart < next) { // next == startValue
assert next == startValue; // TODO: remove
// start is somewhere within the run
rrc.acceptAllPresent(0, runStart + runLength + 1 - startOffset);
} else {
// start is before the run
if (next < runStart) {
// fill in missing values until runStart
rrc.acceptAllAbsent(next - startOffset, runStart - startOffset);
}
// take whole run
rrc.acceptAllPresent(runStart - startOffset, runStart + runLength + 1 - startOffset);
}
next = runStart + runLength + 1;
}
if (next <= Character.MAX_VALUE) {
// fill in the remaining values until end
rrc.acceptAllAbsent(next - startOffset, Character.MAX_VALUE + 1 - startOffset);
}
}
@Override
public void forAllUntil(int offset, char endValue, final RelativeRangeConsumer rrc) {
int next = 0;
for (int run = 0; run < nbrruns; run++) {
int runPos = run << 1;
char runStart = valueslength[runPos];
char runLength = valueslength[runPos + 1];
if (endValue <= runStart) {
// no more relevant values in this run or the following
break;
}
if (next < runStart) {
// fill in missing values until runStart
rrc.acceptAllAbsent(offset + next, offset + runStart);
}
char runEnd = (char) (runStart + runLength);
// endValue is exclusive, but runEnd is inclusive.
if (endValue <= runEnd) {
// we end within this run
rrc.acceptAllPresent(offset + runStart, offset + endValue);
return;
}
rrc.acceptAllPresent(offset + runStart, offset + runEnd + 1); // runEnd is inclusive
next = runEnd + 1;
}
if (next < endValue) {
// fill in the remaining values until end
rrc.acceptAllAbsent(offset + next, offset + endValue);
}
}
@Override
public void forAllInRange(char startValue, char endValue, final RelativeRangeConsumer rrc) {
if (endValue <= startValue) {
throw new IllegalArgumentException(
"startValue (" + startValue + ") must be less than endValue (" + endValue + ")");
}
int startOffset = startValue;
int next = startValue;
for (int run = 0; run < nbrruns; run++) {
int runPos = run << 1;
char runStart = valueslength[runPos];
char runLength = valueslength[runPos + 1];
int runEnd = runStart + runLength;
if (runEnd < startValue) {
// skip forward
continue;
}
if (endValue <= runStart) {
// no more relevant values in this run or the following
break;
}
if (runStart < next) { // next == startValue
// start is somewhere within the run
if (endValue <= runEnd) {
// we also end within this run
rrc.acceptAllPresent(0, endValue - startOffset);
return;
}
rrc.acceptAllPresent(0, runEnd + 1 - startOffset);
} else {
// start is before the run
if (next < runStart) {
// fill in missing values until runStart
rrc.acceptAllAbsent(next - startOffset, runStart - startOffset);
}
if (endValue <= runEnd) {
// we end within this run
rrc.acceptAllPresent(runStart - startOffset, endValue - startOffset);
return;
}
// take whole run
rrc.acceptAllPresent(runStart - startOffset, runStart + runLength + 1 - startOffset);
}
next = runStart + runLength + 1;
}
if (next < endValue) {
// fill in the remaining values until end
rrc.acceptAllAbsent(next - startOffset, endValue - startOffset);
}
}
@Override
public BitmapContainer toBitmapContainer() {
int card = this.getCardinality();
BitmapContainer answer = new BitmapContainer();
for (int rlepos = 0; rlepos < this.nbrruns; ++rlepos) {
int start = (this.getValue(rlepos));
int end = start + (this.getLength(rlepos)) + 1;
Util.setBitmapRange(answer.bitmap, start, end);
}
answer.cardinality = card;
return answer;
}
@Override
public int nextValue(char fromValue) {
int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, fromValue);
int effectiveIndex = index >= 0 ? index : -index - 2;
if (effectiveIndex == -1) {
return first();
}
int startValue = (getValue(effectiveIndex));
int offset = (int) (fromValue) - startValue;
int le = (getLength(effectiveIndex));
if (offset <= le) {
return fromValue;
}
if (effectiveIndex + 1 < numberOfRuns()) {
return (getValue(effectiveIndex + 1));
}
return -1;
}
@Override
public int previousValue(char fromValue) {
int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, fromValue);
int effectiveIndex = index >= 0 ? index : -index - 2;
if (effectiveIndex == -1) {
return -1;
}
int startValue = (getValue(effectiveIndex));
int offset = (int) (fromValue) - startValue;
int le = (getLength(effectiveIndex));
if (offset >= 0 && offset <= le) {
return fromValue;
}
return startValue + le;
}
@Override
public int nextAbsentValue(char fromValue) {
int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, fromValue);
int effectiveIndex = index >= 0 ? index : -index - 2;
if (effectiveIndex == -1) {
return (fromValue);
}
int startValue = (getValue(effectiveIndex));
int offset = (int) (fromValue) - startValue;
int le = (getLength(effectiveIndex));
return offset <= le ? startValue + le + 1 : (int) (fromValue);
}
@Override
public int previousAbsentValue(char fromValue) {
int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, fromValue);
int effectiveIndex = index >= 0 ? index : -index - 2;
if (effectiveIndex == -1) {
return (fromValue);
}
int startValue = (getValue(effectiveIndex));
int offset = (int) (fromValue) - startValue;
int le = (getLength(effectiveIndex));
return offset <= le ? startValue - 1 : (int) (fromValue);
}
@Override
public int first() {
assertNonEmpty(numberOfRuns() == 0);
return (valueslength[0]);
}
@Override
public int last() {
assertNonEmpty(numberOfRuns() == 0);
int index = numberOfRuns() - 1;
int start = (getValue(index));
int length = (getLength(index));
return start + length;
}
}
class RunContainerCharIterator implements PeekableCharIterator {
int pos;
int le = 0;
int maxlength;
int base;
RunContainer parent;
RunContainerCharIterator() {
}
RunContainerCharIterator(RunContainer p) {
wrap(p);
}
@Override
public PeekableCharIterator clone() {
try {
return (PeekableCharIterator) super.clone();
} catch (CloneNotSupportedException e) {
return null;// will not happen
}
}
@Override
public boolean hasNext() {
return pos < parent.nbrruns;
}
@Override
public char next() {
char ans = (char) (base + le);
le++;
if (le > maxlength) {
pos++;
le = 0;
if (pos < parent.nbrruns) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
}
}
return ans;
}
@Override
public int nextAsInt() {
int ans = base + le;
le++;
if (le > maxlength) {
pos++;
le = 0;
if (pos < parent.nbrruns) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
}
}
return ans;
}
@Override
public void remove() {
throw new RuntimeException("Not implemented");// TODO
}
void wrap(RunContainer p) {
parent = p;
pos = 0;
le = 0;
if (pos < parent.nbrruns) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
}
}
@Override
public void advanceIfNeeded(char minval) {
while (base + maxlength < (minval)) {
pos++;
le = 0;
if (pos < parent.nbrruns) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
} else {
return;
}
}
if (base > (minval)) {
return;
}
le = (minval) - base;
}
@Override
public char peekNext() {
return (char) (base + le);
}
}
class RunContainerCharRankIterator extends RunContainerCharIterator
implements PeekableCharRankIterator {
private int nextRank = 1;
RunContainerCharRankIterator(RunContainer p) {
super(p);
}
@Override
public char next() {
++nextRank;
return super.next();
}
@Override
public int nextAsInt() {
++nextRank;
return super.nextAsInt();
}
@Override
public void advanceIfNeeded(char minval) {
while (base + maxlength < (minval)) {
nextRank += maxlength - le + 1;
pos++;
le = 0;
if (pos < parent.nbrruns) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
} else {
return;
}
}
if (base > (minval)) {
return;
}
int nextLe = (minval) - base;
nextRank += nextLe - le;
le = nextLe;
}
@Override
public int peekNextRank() {
return nextRank;
}
@Override
public RunContainerCharRankIterator clone() {
return (RunContainerCharRankIterator) super.clone();
}
}
final class ReverseRunContainerCharIterator implements PeekableCharIterator {
int pos;
private int le;
private RunContainer parent;
private int maxlength;
private int base;
ReverseRunContainerCharIterator() {
}
ReverseRunContainerCharIterator(RunContainer p) {
wrap(p);
}
@Override
public PeekableCharIterator clone() {
try {
return (PeekableCharIterator) super.clone();
} catch (CloneNotSupportedException e) {
return null;// will not happen
}
}
@Override
public boolean hasNext() {
return pos >= 0;
}
@Override
public char next() {
char ans = (char) (base + maxlength - le);
le++;
if (le > maxlength) {
pos--;
le = 0;
if (pos >= 0) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
}
}
return ans;
}
@Override
public int nextAsInt() {
int ans = base + maxlength - le;
le++;
if (le > maxlength) {
pos--;
le = 0;
if (pos >= 0) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
}
}
return ans;
}
@Override
public void advanceIfNeeded(char maxval) {
while (base > (maxval)) {
pos--;
le = 0;
if (pos >= 0) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
} else {
return;
}
}
if (base + maxlength < (maxval)) {
return;
}
le = maxlength + base - (maxval);
}
@Override
public char peekNext() {
return (char) (base + maxlength - le);
}
@Override
public void remove() {
throw new RuntimeException("Not implemented");// TODO
}
void wrap(RunContainer p) {
parent = p;
pos = parent.nbrruns - 1;
le = 0;
if (pos >= 0) {
maxlength = (parent.getLength(pos));
base = (parent.getValue(pos));
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy