All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.avro.HoodieAvroUtils Maven / Gradle / Ivy

There is a newer version: 1.0.0-beta2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi.avro;

import org.apache.hudi.avro.model.BooleanWrapper;
import org.apache.hudi.avro.model.BytesWrapper;
import org.apache.hudi.avro.model.DateWrapper;
import org.apache.hudi.avro.model.DecimalWrapper;
import org.apache.hudi.avro.model.DoubleWrapper;
import org.apache.hudi.avro.model.FloatWrapper;
import org.apache.hudi.avro.model.IntWrapper;
import org.apache.hudi.avro.model.LongWrapper;
import org.apache.hudi.avro.model.StringWrapper;
import org.apache.hudi.avro.model.TimestampMicrosWrapper;
import org.apache.hudi.common.config.SerializableSchema;
import org.apache.hudi.common.model.HoodieAvroIndexedRecord;
import org.apache.hudi.common.model.HoodieAvroRecord;
import org.apache.hudi.common.model.HoodieOperation;
import org.apache.hudi.common.model.HoodieRecord;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.common.util.SpillableMapUtils;
import org.apache.hudi.common.util.StringUtils;
import org.apache.hudi.common.util.ValidationUtils;
import org.apache.hudi.common.util.collection.Pair;
import org.apache.hudi.exception.HoodieException;
import org.apache.hudi.exception.HoodieIOException;
import org.apache.hudi.exception.SchemaCompatibilityException;
import org.apache.hudi.util.Lazy;

import org.apache.avro.AvroRuntimeException;
import org.apache.avro.Conversions;
import org.apache.avro.Conversions.DecimalConversion;
import org.apache.avro.JsonProperties;
import org.apache.avro.LogicalTypes;
import org.apache.avro.LogicalTypes.Decimal;
import org.apache.avro.Schema;
import org.apache.avro.Schema.Field;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericData.Record;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericDatumWriter;
import org.apache.avro.generic.GenericFixed;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.generic.IndexedRecord;
import org.apache.avro.io.BinaryDecoder;
import org.apache.avro.io.BinaryEncoder;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.io.JsonDecoder;
import org.apache.avro.io.JsonEncoder;
import org.apache.avro.specific.SpecificRecordBase;
import org.apache.avro.util.Utf8;
import org.apache.hadoop.util.VersionUtil;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.sql.Date;
import java.sql.Timestamp;
import java.time.Instant;
import java.time.LocalDate;
import java.time.ZoneId;
import java.time.ZonedDateTime;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Properties;
import java.util.Set;
import java.util.TimeZone;
import java.util.regex.Pattern;
import java.util.stream.Collectors;

import static org.apache.avro.Schema.Type.ARRAY;
import static org.apache.avro.Schema.Type.MAP;
import static org.apache.avro.Schema.Type.UNION;
import static org.apache.hudi.avro.AvroSchemaUtils.createNullableSchema;
import static org.apache.hudi.avro.AvroSchemaUtils.isNullable;
import static org.apache.hudi.avro.AvroSchemaUtils.resolveNullableSchema;
import static org.apache.hudi.avro.AvroSchemaUtils.resolveUnionSchema;
import static org.apache.hudi.common.util.DateTimeUtils.instantToMicros;
import static org.apache.hudi.common.util.DateTimeUtils.microsToInstant;
import static org.apache.hudi.common.util.ValidationUtils.checkState;
import static org.apache.hudi.metadata.HoodieTableMetadataUtil.tryUpcastDecimal;

/**
 * Helper class to do common stuff across Avro.
 */
public class HoodieAvroUtils {

  public static final String AVRO_VERSION = Schema.class.getPackage().getImplementationVersion();
  private static final ThreadLocal BINARY_ENCODER = ThreadLocal.withInitial(() -> null);
  private static final ThreadLocal BINARY_DECODER = ThreadLocal.withInitial(() -> null);

  private static final Conversions.DecimalConversion AVRO_DECIMAL_CONVERSION = new Conversions.DecimalConversion();
  /**
   * NOTE: PLEASE READ CAREFULLY
   * 

* In Avro 1.10 generated builders rely on {@code SpecificData.getForSchema} invocation that in turn * does use reflection to load the code-gen'd class corresponding to the Avro record model. This has * serious adverse effects in terms of performance when gets executed on the hot-path (both, in terms * of runtime and efficiency). *

* To work this around instead of using default code-gen'd builder invoking {@code SpecificData.getForSchema}, * we instead rely on overloaded ctor accepting another instance of the builder: {@code Builder(Builder)}, * which bypasses such invocation. Following corresponding builder's stubs are statically initialized * to be used exactly for that purpose. *

* You can find more details in HUDI-3834. */ private static final Lazy STRING_WRAPPER_BUILDER_STUB = Lazy.lazily(StringWrapper::newBuilder); private static final Lazy BYTES_WRAPPER_BUILDER_STUB = Lazy.lazily(BytesWrapper::newBuilder); private static final Lazy DOUBLE_WRAPPER_BUILDER_STUB = Lazy.lazily(DoubleWrapper::newBuilder); private static final Lazy FLOAT_WRAPPER_BUILDER_STUB = Lazy.lazily(FloatWrapper::newBuilder); private static final Lazy LONG_WRAPPER_BUILDER_STUB = Lazy.lazily(LongWrapper::newBuilder); private static final Lazy INT_WRAPPER_BUILDER_STUB = Lazy.lazily(IntWrapper::newBuilder); private static final Lazy BOOLEAN_WRAPPER_BUILDER_STUB = Lazy.lazily(BooleanWrapper::newBuilder); private static final Lazy TIMESTAMP_MICROS_WRAPPER_BUILDER_STUB = Lazy.lazily(TimestampMicrosWrapper::newBuilder); private static final Lazy DECIMAL_WRAPPER_BUILDER_STUB = Lazy.lazily(DecimalWrapper::newBuilder); private static final Lazy DATE_WRAPPER_BUILDER_STUB = Lazy.lazily(DateWrapper::newBuilder); private static final long MILLIS_PER_DAY = 86400000L; //Export for test public static final Conversions.DecimalConversion DECIMAL_CONVERSION = new Conversions.DecimalConversion(); // As per https://avro.apache.org/docs/current/spec.html#names private static final Pattern INVALID_AVRO_CHARS_IN_NAMES_PATTERN = Pattern.compile("[^A-Za-z0-9_]"); private static final Pattern INVALID_AVRO_FIRST_CHAR_IN_NAMES_PATTERN = Pattern.compile("[^A-Za-z_]"); private static final String MASK_FOR_INVALID_CHARS_IN_NAMES = "__"; // All metadata fields are optional strings. public static final Schema METADATA_FIELD_SCHEMA = createNullableSchema(Schema.Type.STRING); public static final Schema RECORD_KEY_SCHEMA = initRecordKeySchema(); /** * TODO serialize other type of record. */ public static Option recordToBytes(HoodieRecord record, Schema schema) throws IOException { return Option.of(HoodieAvroUtils.indexedRecordToBytes(record.toIndexedRecord(schema, new Properties()).get().getData())); } /** * Convert a given avro record to bytes. */ public static byte[] avroToBytes(GenericRecord record) { return indexedRecordToBytes(record); } public static byte[] indexedRecordToBytes(T record) { GenericDatumWriter writer = new GenericDatumWriter<>(record.getSchema(), ConvertingGenericData.INSTANCE); try (ByteArrayOutputStream out = new ByteArrayOutputStream()) { BinaryEncoder encoder = EncoderFactory.get().binaryEncoder(out, BINARY_ENCODER.get()); BINARY_ENCODER.set(encoder); writer.write(record, encoder); encoder.flush(); return out.toByteArray(); } catch (IOException e) { throw new HoodieIOException("Cannot convert GenericRecord to bytes", e); } } /** * Convert a given avro record to json and return the encoded bytes. * * @param record The GenericRecord to convert * @param pretty Whether to pretty-print the json output */ public static byte[] avroToJson(GenericRecord record, boolean pretty) throws IOException { DatumWriter writer = new GenericDatumWriter<>(record.getSchema()); ByteArrayOutputStream out = new ByteArrayOutputStream(); JsonEncoder jsonEncoder = EncoderFactory.get().jsonEncoder(record.getSchema(), out, pretty); writer.write(record, jsonEncoder); jsonEncoder.flush(); return out.toByteArray(); } /** * Convert serialized bytes back into avro record. */ public static GenericRecord bytesToAvro(byte[] bytes, Schema schema) throws IOException { return bytesToAvro(bytes, schema, schema); } /** * Convert serialized bytes back into avro record. */ public static GenericRecord bytesToAvro(byte[] bytes, Schema writerSchema, Schema readerSchema) throws IOException { BinaryDecoder decoder = DecoderFactory.get().binaryDecoder(bytes, BINARY_DECODER.get()); BINARY_DECODER.set(decoder); GenericDatumReader reader = new GenericDatumReader<>(writerSchema, readerSchema); return reader.read(null, decoder); } /** * Convert json bytes back into avro record. */ public static GenericRecord jsonBytesToAvro(byte[] bytes, Schema schema) throws IOException { ByteArrayInputStream bio = new ByteArrayInputStream(bytes); JsonDecoder jsonDecoder = DecoderFactory.get().jsonDecoder(schema, bio); GenericDatumReader reader = new GenericDatumReader<>(schema); return reader.read(null, jsonDecoder); } public static boolean isTypeNumeric(Schema.Type type) { return type == Schema.Type.INT || type == Schema.Type.LONG || type == Schema.Type.FLOAT || type == Schema.Type.DOUBLE; } public static boolean isMetadataField(String fieldName) { return HoodieRecord.HOODIE_META_COLUMNS_WITH_OPERATION.contains(fieldName); } public static Schema createHoodieWriteSchema(Schema originalSchema) { return HoodieAvroUtils.addMetadataFields(originalSchema); } public static Schema createHoodieWriteSchema(String originalSchema) { return createHoodieWriteSchema(new Schema.Parser().parse(originalSchema)); } public static Schema createHoodieWriteSchema(String originalSchema, boolean withOperationField) { return addMetadataFields(new Schema.Parser().parse(originalSchema), withOperationField); } /** * Adds the Hoodie metadata fields to the given schema. * * @param schema The schema */ public static Schema addMetadataFields(Schema schema) { return addMetadataFields(schema, false); } /** * Adds the Hoodie metadata fields to the given schema. * * @param schema The schema * @param withOperationField Whether to include the '_hoodie_operation' field */ public static Schema addMetadataFields(Schema schema, boolean withOperationField) { int newFieldsSize = HoodieRecord.HOODIE_META_COLUMNS.size() + (withOperationField ? 1 : 0); List parentFields = new ArrayList<>(schema.getFields().size() + newFieldsSize); Schema.Field commitTimeField = new Schema.Field(HoodieRecord.COMMIT_TIME_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field commitSeqnoField = new Schema.Field(HoodieRecord.COMMIT_SEQNO_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field recordKeyField = new Schema.Field(HoodieRecord.RECORD_KEY_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field partitionPathField = new Schema.Field(HoodieRecord.PARTITION_PATH_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field fileNameField = new Schema.Field(HoodieRecord.FILENAME_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); parentFields.add(commitTimeField); parentFields.add(commitSeqnoField); parentFields.add(recordKeyField); parentFields.add(partitionPathField); parentFields.add(fileNameField); if (withOperationField) { final Schema.Field operationField = new Schema.Field(HoodieRecord.OPERATION_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); parentFields.add(operationField); } for (Schema.Field field : schema.getFields()) { if (!isMetadataField(field.name())) { Schema.Field newField = new Schema.Field(field.name(), field.schema(), field.doc(), field.defaultVal()); for (Map.Entry prop : field.getObjectProps().entrySet()) { newField.addProp(prop.getKey(), prop.getValue()); } parentFields.add(newField); } } Schema mergedSchema = Schema.createRecord(schema.getName(), schema.getDoc(), schema.getNamespace(), false); for (Map.Entry prop : schema.getObjectProps().entrySet()) { mergedSchema.addProp(prop.getKey(), prop.getValue()); } mergedSchema.setFields(parentFields); return mergedSchema; } public static Schema removeMetadataFields(Schema schema) { return removeFields(schema, HoodieRecord.HOODIE_META_COLUMNS_WITH_OPERATION); } public static Schema removeFields(Schema schema, Set fieldsToRemove) { List filteredFields = schema.getFields() .stream() .filter(field -> !fieldsToRemove.contains(field.name())) .map(field -> new Schema.Field(field.name(), field.schema(), field.doc(), field.defaultVal())) .collect(Collectors.toList()); Schema filteredSchema = Schema.createRecord(schema.getName(), schema.getDoc(), schema.getNamespace(), false); filteredSchema.setFields(filteredFields); return filteredSchema; } public static String addMetadataColumnTypes(String hiveColumnTypes) { return "string,string,string,string,string," + hiveColumnTypes; } private static Schema initRecordKeySchema() { Schema.Field recordKeyField = new Schema.Field(HoodieRecord.RECORD_KEY_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema recordKeySchema = Schema.createRecord("HoodieRecordKey", "", "", false); recordKeySchema.setFields(Collections.singletonList(recordKeyField)); return recordKeySchema; } public static Schema getRecordKeySchema() { return RECORD_KEY_SCHEMA; } /** * Fetch schema for record key and partition path. */ public static Schema getRecordKeyPartitionPathSchema() { List toBeAddedFields = new ArrayList<>(); Schema recordSchema = Schema.createRecord("HoodieRecordKey", "", "", false); Schema.Field recordKeyField = new Schema.Field(HoodieRecord.RECORD_KEY_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field partitionPathField = new Schema.Field(HoodieRecord.PARTITION_PATH_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); toBeAddedFields.add(recordKeyField); toBeAddedFields.add(partitionPathField); recordSchema.setFields(toBeAddedFields); return recordSchema; } /** * Fetch schema for record key and partition path. */ public static Schema getSchemaForFields(Schema fileSchema, List fields) { List toBeAddedFields = new ArrayList<>(); Schema recordSchema = Schema.createRecord("HoodieRecordKey", "", "", false); for (Schema.Field schemaField : fileSchema.getFields()) { if (fields.contains(schemaField.name())) { toBeAddedFields.add(new Schema.Field(schemaField.name(), schemaField.schema(), schemaField.doc(), schemaField.defaultVal())); } } recordSchema.setFields(toBeAddedFields); return recordSchema; } public static GenericRecord addHoodieKeyToRecord(GenericRecord record, String recordKey, String partitionPath, String fileName) { record.put(HoodieRecord.FILENAME_METADATA_FIELD, fileName); record.put(HoodieRecord.PARTITION_PATH_METADATA_FIELD, partitionPath); record.put(HoodieRecord.RECORD_KEY_METADATA_FIELD, recordKey); return record; } public static GenericRecord addOperationToRecord(GenericRecord record, HoodieOperation operation) { record.put(HoodieRecord.OPERATION_METADATA_FIELD, operation.getName()); return record; } /** * Adds the Hoodie commit metadata into the provided Generic Record. */ public static GenericRecord addCommitMetadataToRecord(GenericRecord record, String instantTime, String commitSeqno) { record.put(HoodieRecord.COMMIT_TIME_METADATA_FIELD, instantTime); record.put(HoodieRecord.COMMIT_SEQNO_METADATA_FIELD, commitSeqno); return record; } public static GenericRecord stitchRecords(GenericRecord left, GenericRecord right, Schema stitchedSchema) { GenericRecord result = new Record(stitchedSchema); for (Schema.Field f : left.getSchema().getFields()) { result.put(f.name(), left.get(f.name())); } for (Schema.Field f : right.getSchema().getFields()) { result.put(f.name(), right.get(f.name())); } return result; } /** * Given an Avro record with a given schema, rewrites it into the new schema while setting fields only from the new * schema. *

* NOTE: This method is rewriting every record's field that is record itself recursively. It's * caller's responsibility to make sure that no unnecessary re-writing occurs (by preemptively * checking whether the record does require re-writing to adhere to the new schema) *

* NOTE: Here, the assumption is that you cannot go from an evolved schema (schema with (N) fields) * to an older schema (schema with (N-1) fields). All fields present in the older record schema MUST be present in the * new schema and the default/existing values are carried over. *

* This particular method does the following: *

    *
  1. Create a new empty GenericRecord with the new schema.
  2. *
  3. For GenericRecord, copy over the data from the old schema to the new schema or set default values for all * fields of this transformed schema
  4. *
  5. For SpecificRecord, hoodie_metadata_fields have a special treatment (see below)
  6. *
*

* For SpecificRecord we ignore Hudi Metadata fields, because for code generated * avro classes (HoodieMetadataRecord), the avro record is a SpecificBaseRecord type instead of a GenericRecord. * SpecificBaseRecord throws null pointer exception for record.get(name) if name is not present in the schema of the * record (which happens when converting a SpecificBaseRecord without hoodie_metadata_fields to a new record with it). * In this case, we do NOT set the defaults for the hoodie_metadata_fields explicitly, instead, the new record assumes * the default defined in the avro schema itself. * TODO: See if we can always pass GenericRecord instead of SpecificBaseRecord in some cases. */ public static GenericRecord rewriteRecord(GenericRecord oldRecord, Schema newSchema) { GenericRecord newRecord = new GenericData.Record(newSchema); boolean isSpecificRecord = oldRecord instanceof SpecificRecordBase; for (Schema.Field f : newSchema.getFields()) { if (!(isSpecificRecord && isMetadataField(f.name()))) { copyOldValueOrSetDefault(oldRecord, newRecord, f); } } return newRecord; } public static GenericRecord rewriteRecordWithMetadata(GenericRecord genericRecord, Schema newSchema, String fileName) { GenericRecord newRecord = new GenericData.Record(newSchema); for (Schema.Field f : newSchema.getFields()) { copyOldValueOrSetDefault(genericRecord, newRecord, f); } // do not preserve FILENAME_METADATA_FIELD newRecord.put(HoodieRecord.FILENAME_META_FIELD_ORD, fileName); return newRecord; } // TODO Unify the logical of rewriteRecordWithMetadata and rewriteEvolutionRecordWithMetadata, and delete this function. public static GenericRecord rewriteEvolutionRecordWithMetadata(GenericRecord genericRecord, Schema newSchema, String fileName) { GenericRecord newRecord = HoodieAvroUtils.rewriteRecordWithNewSchema(genericRecord, newSchema, new HashMap<>()); // do not preserve FILENAME_METADATA_FIELD newRecord.put(HoodieRecord.FILENAME_META_FIELD_ORD, fileName); return newRecord; } /** * Converts list of {@link GenericRecord} provided into the {@link GenericRecord} adhering to the * provided {@code newSchema}. *

* To better understand conversion rules please check {@link #rewriteRecord(GenericRecord, Schema)} */ public static List rewriteRecords(List records, Schema newSchema) { return records.stream().map(r -> rewriteRecord(r, newSchema)).collect(Collectors.toList()); } /** * Given an Avro record and list of columns to remove, this method removes the list of columns from * the given avro record using rewriteRecord method. *

* To better understand how it removes please check {@link #rewriteRecord(GenericRecord, Schema)} */ public static GenericRecord removeFields(GenericRecord record, Set fieldsToRemove) { Schema newSchema = removeFields(record.getSchema(), fieldsToRemove); return rewriteRecord(record, newSchema); } private static void copyOldValueOrSetDefault(GenericRecord oldRecord, GenericRecord newRecord, Schema.Field field) { Schema oldSchema = oldRecord.getSchema(); Field oldSchemaField = oldSchema.getField(field.name()); Object fieldValue = oldSchemaField == null ? null : oldRecord.get(oldSchemaField.pos()); if (fieldValue != null) { // In case field's value is a nested record, we have to rewrite it as well Object newFieldValue; if (fieldValue instanceof GenericRecord) { GenericRecord record = (GenericRecord) fieldValue; // May return null when use rewrite String recordFullName = record.getSchema().getFullName(); String fullName = recordFullName != null ? recordFullName : oldSchemaField.name(); newFieldValue = rewriteRecord(record, resolveUnionSchema(field.schema(), fullName)); } else { newFieldValue = fieldValue; } newRecord.put(field.pos(), newFieldValue); } else if (field.defaultVal() instanceof JsonProperties.Null) { newRecord.put(field.pos(), null); } else { if (!isNullable(field.schema()) && field.defaultVal() == null) { throw new SchemaCompatibilityException("Field " + field.name() + " has no default value and is null in old record"); } newRecord.put(field.pos(), field.defaultVal()); } } /** * Generate a reader schema off the provided writeSchema, to just project out the provided columns. */ public static Schema generateProjectionSchema(Schema originalSchema, List fieldNames) { Map schemaFieldsMap = originalSchema.getFields().stream() .map(r -> Pair.of(r.name().toLowerCase(), r)).collect(Collectors.toMap(Pair::getLeft, Pair::getRight)); List projectedFields = new ArrayList<>(); for (String fn : fieldNames) { Schema.Field field = schemaFieldsMap.get(fn.toLowerCase()); if (field == null) { throw new HoodieException("Field " + fn + " not found in log schema. Query cannot proceed! " + "Derived Schema Fields: " + new ArrayList<>(schemaFieldsMap.keySet())); } else { projectedFields.add(new Schema.Field(field.name(), field.schema(), field.doc(), field.defaultVal())); } } Schema projectedSchema = Schema.createRecord(originalSchema.getName(), originalSchema.getDoc(), originalSchema.getNamespace(), originalSchema.isError()); projectedSchema.setFields(projectedFields); return projectedSchema; } /** * Obtain the root-level field name of a full field name, possibly a nested field. * For example, given "a.b.c", the output is "a"; given "a", the output is "a". * * @param fieldName The field name. * @return Root-level field name */ public static String getRootLevelFieldName(String fieldName) { return fieldName.split("\\.")[0]; } /** * Obtain value of the provided key, which is consistent with avro before 1.10 */ public static Object getFieldVal(GenericRecord record, String key) { return getFieldVal(record, key, true); } /** * Obtain value of the provided key, when set returnNullIfNotFound false, * it is consistent with avro after 1.10 */ public static Object getFieldVal(GenericRecord record, String key, boolean returnNullIfNotFound) { Schema.Field field = record.getSchema().getField(key); if (field == null) { if (returnNullIfNotFound) { return null; } else { // Since avro 1.10, arvo will throw AvroRuntimeException("Not a valid schema field: " + key) // rather than return null like the previous version if record doesn't contain this key. // Here we simulate this behavior. throw new AvroRuntimeException("Not a valid schema field: " + key); } } else { return record.get(field.pos()); } } /** * Obtain value of the provided field as string, denoted by dot notation. e.g: a.b.c */ public static String getNestedFieldValAsString(GenericRecord record, String fieldName, boolean returnNullIfNotFound, boolean consistentLogicalTimestampEnabled) { Object obj = getNestedFieldVal(record, fieldName, returnNullIfNotFound, consistentLogicalTimestampEnabled); return StringUtils.objToString(obj); } /** * Obtain value of the provided field, denoted by dot notation. e.g: a.b.c */ public static Object getNestedFieldVal(GenericRecord record, String fieldName, boolean returnNullIfNotFound, boolean consistentLogicalTimestampEnabled) { String[] parts = fieldName.split("\\."); GenericRecord valueNode = record; for (int i = 0; i < parts.length; i++) { String part = parts[i]; Object val; try { val = HoodieAvroUtils.getFieldVal(valueNode, part, returnNullIfNotFound); } catch (AvroRuntimeException e) { if (returnNullIfNotFound) { return null; } else { throw new HoodieException( fieldName + "(Part -" + parts[i] + ") field not found in record. Acceptable fields were :" + valueNode.getSchema().getFields().stream().map(Field::name).collect(Collectors.toList())); } } if (i == parts.length - 1) { // return, if last part of name if (val == null) { return null; } else { Schema fieldSchema = valueNode.getSchema().getField(part).schema(); return convertValueForSpecificDataTypes(fieldSchema, val, consistentLogicalTimestampEnabled); } } else { if (!(val instanceof GenericRecord)) { if (returnNullIfNotFound) { return null; } else { throw new HoodieException("Cannot find a record at part value :" + part); } } else { valueNode = (GenericRecord) val; } } } // This can only be reached if the length of parts is 0 if (returnNullIfNotFound) { return null; } else { throw new HoodieException( fieldName + " field not found in record. Acceptable fields were :" + valueNode.getSchema().getFields().stream().map(Field::name).collect(Collectors.toList())); } } /** * Get schema for the given field and record. Field can be nested, denoted by dot notation. e.g: a.b.c * * @param record - record containing the value of the given field * @param fieldName - name of the field * @return */ public static Schema getNestedFieldSchemaFromRecord(GenericRecord record, String fieldName) { String[] parts = fieldName.split("\\."); GenericRecord valueNode = record; int i = 0; for (; i < parts.length; i++) { String part = parts[i]; Object val = valueNode.get(part); if (i == parts.length - 1) { return resolveNullableSchema(valueNode.getSchema().getField(part).schema()); } else { if (!(val instanceof GenericRecord)) { throw new HoodieException("Cannot find a record at part value :" + part); } valueNode = (GenericRecord) val; } } throw new HoodieException("Failed to get schema. Not a valid field name: " + fieldName); } /** * Get schema for the given field and write schema. Field can be nested, denoted by dot notation. e.g: a.b.c * Use this method when record is not available. Otherwise, prefer to use {@link #getNestedFieldSchemaFromRecord(GenericRecord, String)} * * @param writeSchema - write schema of the record * @param fieldName - name of the field * @return */ public static Schema getNestedFieldSchemaFromWriteSchema(Schema writeSchema, String fieldName) { String[] parts = fieldName.split("\\."); int i = 0; for (; i < parts.length; i++) { String part = parts[i]; Schema schema = writeSchema.getField(part).schema(); if (i == parts.length - 1) { return resolveNullableSchema(schema); } } throw new HoodieException("Failed to get schema. Not a valid field name: " + fieldName); } /** * Returns the string value of the given record {@code rec} and field {@code fieldName}. * The field and value both could be missing. * * @param rec The record * @param fieldName The field name * @return the string form of the field * or empty if the schema does not contain the field name or the value is null */ public static Option getNullableValAsString(GenericRecord rec, String fieldName) { Schema.Field field = rec.getSchema().getField(fieldName); String fieldVal = field == null ? null : StringUtils.objToString(rec.get(field.pos())); return Option.ofNullable(fieldVal); } /** * This method converts values for fields with certain Avro/Parquet data types that require special handling. * * @param fieldSchema avro field schema * @param fieldValue avro field value * @return field value either converted (for certain data types) or as it is. */ public static Object convertValueForSpecificDataTypes(Schema fieldSchema, Object fieldValue, boolean consistentLogicalTimestampEnabled) { if (fieldSchema == null) { return fieldValue; } else if (fieldValue == null) { checkState(isNullable(fieldSchema)); return null; } return convertValueForAvroLogicalTypes(resolveNullableSchema(fieldSchema), fieldValue, consistentLogicalTimestampEnabled); } /** * This method converts values for fields with certain Avro Logical data types that require special handling. *

* Logical Date Type is converted to actual Date value instead of Epoch Integer which is how it is * represented/stored in parquet. *

* Decimal Data Type is converted to actual decimal value instead of bytes/fixed which is how it is * represented/stored in parquet. * * @param fieldSchema avro field schema * @param fieldValue avro field value * @return field value either converted (for certain data types) or as it is. */ private static Object convertValueForAvroLogicalTypes(Schema fieldSchema, Object fieldValue, boolean consistentLogicalTimestampEnabled) { if (fieldSchema.getLogicalType() == LogicalTypes.date()) { return LocalDate.ofEpochDay(Long.parseLong(fieldValue.toString())); } else if (fieldSchema.getLogicalType() == LogicalTypes.timestampMillis() && consistentLogicalTimestampEnabled) { return new Timestamp(Long.parseLong(fieldValue.toString())); } else if (fieldSchema.getLogicalType() == LogicalTypes.timestampMicros() && consistentLogicalTimestampEnabled) { return new Timestamp(Long.parseLong(fieldValue.toString()) / 1000); } else if (fieldSchema.getLogicalType() instanceof LogicalTypes.Decimal) { Decimal dc = (Decimal) fieldSchema.getLogicalType(); DecimalConversion decimalConversion = new DecimalConversion(); if (fieldSchema.getType() == Schema.Type.FIXED) { return decimalConversion.fromFixed((GenericFixed) fieldValue, fieldSchema, LogicalTypes.decimal(dc.getPrecision(), dc.getScale())); } else if (fieldSchema.getType() == Schema.Type.BYTES) { ByteBuffer byteBuffer = (ByteBuffer) fieldValue; BigDecimal convertedValue = decimalConversion.fromBytes(byteBuffer, fieldSchema, LogicalTypes.decimal(dc.getPrecision(), dc.getScale())); byteBuffer.rewind(); return convertedValue; } } return fieldValue; } public static Schema getNullSchema() { return Schema.create(Schema.Type.NULL); } /** * Sanitizes Name according to Avro rule for names. * Removes characters other than the ones mentioned in https://avro.apache.org/docs/current/spec.html#names . * * @param name input name * @return sanitized name */ public static String sanitizeName(String name) { return sanitizeName(name, MASK_FOR_INVALID_CHARS_IN_NAMES); } /** * Sanitizes Name according to Avro rule for names. * Removes characters other than the ones mentioned in https://avro.apache.org/docs/current/spec.html#names . * * @param name input name * @param invalidCharMask replacement for invalid characters. * @return sanitized name */ public static String sanitizeName(String name, String invalidCharMask) { if (INVALID_AVRO_FIRST_CHAR_IN_NAMES_PATTERN.matcher(name.substring(0, 1)).matches()) { name = INVALID_AVRO_FIRST_CHAR_IN_NAMES_PATTERN.matcher(name).replaceFirst(invalidCharMask); } return INVALID_AVRO_CHARS_IN_NAMES_PATTERN.matcher(name).replaceAll(invalidCharMask); } /** * Gets record column values into object array. * * @param record Hoodie record. * @param columns Names of the columns to get values. * @param schema {@link Schema} instance. * @return Column value. */ public static Object[] getRecordColumnValues(HoodieAvroRecord record, String[] columns, Schema schema, boolean consistentLogicalTimestampEnabled) { try { GenericRecord genericRecord = (GenericRecord) ((HoodieAvroIndexedRecord) record.toIndexedRecord(schema, new Properties()).get()).getData(); List list = new ArrayList<>(); for (String col : columns) { list.add(HoodieAvroUtils.getNestedFieldVal(genericRecord, col, true, consistentLogicalTimestampEnabled)); } return list.toArray(); } catch (IOException e) { throw new HoodieIOException("Unable to read record with key:" + record.getKey(), e); } } /** * Gets record column values into one object. * * @param record Hoodie record. * @param columns Names of the columns to get values. * @param schema {@link SerializableSchema} instance. * @return Column value if a single column, or concatenated String values by comma. */ public static Object getRecordColumnValues(HoodieAvroRecord record, String[] columns, SerializableSchema schema, boolean consistentLogicalTimestampEnabled) { return getRecordColumnValues(record, columns, schema.get(), consistentLogicalTimestampEnabled); } // TODO java-doc public static GenericRecord rewriteRecordWithNewSchema(IndexedRecord oldRecord, Schema newSchema) { return rewriteRecordWithNewSchema(oldRecord, newSchema, Collections.emptyMap()); } /** * Given a avro record with a given schema, rewrites it into the new schema while setting fields only from the new schema. * support deep rewrite for nested record. * This particular method does the following things : * a) Create a new empty GenericRecord with the new schema. * b) For GenericRecord, copy over the data from the old schema to the new schema or set default values for all fields of this transformed schema * * @param oldRecord oldRecord to be rewritten * @param newSchema newSchema used to rewrite oldRecord * @param renameCols a map store all rename cols, (k, v)-> (colNameFromNewSchema, colNameFromOldSchema) * @return newRecord for new Schema */ public static GenericRecord rewriteRecordWithNewSchema(IndexedRecord oldRecord, Schema newSchema, Map renameCols) { Object newRecord = rewriteRecordWithNewSchema(oldRecord, oldRecord.getSchema(), newSchema, renameCols, new LinkedList<>(), false); return (GenericData.Record) newRecord; } public static GenericRecord rewriteRecordWithNewSchema(IndexedRecord oldRecord, Schema newSchema, Map renameCols, boolean validate) { Object newRecord = rewriteRecordWithNewSchema(oldRecord, oldRecord.getSchema(), newSchema, renameCols, new LinkedList<>(), validate); return (GenericData.Record) newRecord; } /** * Given a avro record with a given schema, rewrites it into the new schema while setting fields only from the new schema. * support deep rewrite for nested record and adjust rename operation. * This particular method does the following things : * a) Create a new empty GenericRecord with the new schema. * b) For GenericRecord, copy over the data from the old schema to the new schema or set default values for all fields of this transformed schema * * @param oldRecord oldRecord to be rewritten * @param oldAvroSchema old avro schema. * @param newSchema newSchema used to rewrite oldRecord * @param renameCols a map store all rename cols, (k, v)-> (colNameFromNewSchema, colNameFromOldSchema) * @param fieldNames track the full name of visited field when we travel new schema. * @return newRecord for new Schema */ private static Object rewriteRecordWithNewSchema(Object oldRecord, Schema oldAvroSchema, Schema newSchema, Map renameCols, Deque fieldNames, boolean validate) { if (oldRecord == null) { return null; } // try to get real schema for union type Schema oldSchema = getActualSchemaFromUnion(oldAvroSchema, oldRecord); Object newRecord = rewriteRecordWithNewSchemaInternal(oldRecord, oldSchema, newSchema, renameCols, fieldNames); // validation is recursive so it only needs to be called on the original input if (validate && !ConvertingGenericData.INSTANCE.validate(newSchema, newRecord)) { throw new SchemaCompatibilityException( "Unable to validate the rewritten record " + oldRecord + " against schema " + newSchema); } return newRecord; } private static Object rewriteRecordWithNewSchemaInternal(Object oldRecord, Schema oldSchema, Schema newSchema, Map renameCols, Deque fieldNames) { switch (newSchema.getType()) { case RECORD: ValidationUtils.checkArgument(oldRecord instanceof IndexedRecord, "cannot rewrite record with different type"); IndexedRecord indexedRecord = (IndexedRecord) oldRecord; List fields = newSchema.getFields(); GenericData.Record newRecord = new GenericData.Record(newSchema); for (int i = 0; i < fields.size(); i++) { Schema.Field field = fields.get(i); String fieldName = field.name(); fieldNames.push(fieldName); Schema.Field oldField = oldSchema.getField(field.name()); if (oldField != null && !renameCols.containsKey(field.name())) { newRecord.put(i, rewriteRecordWithNewSchema(indexedRecord.get(oldField.pos()), oldField.schema(), fields.get(i).schema(), renameCols, fieldNames, false)); } else { String fieldFullName = createFullName(fieldNames); String fieldNameFromOldSchema = renameCols.get(fieldFullName); // deal with rename Schema.Field oldFieldRenamed = fieldNameFromOldSchema == null ? null : oldSchema.getField(fieldNameFromOldSchema); if (oldFieldRenamed != null) { // find rename newRecord.put(i, rewriteRecordWithNewSchema(indexedRecord.get(oldFieldRenamed.pos()), oldFieldRenamed.schema(), fields.get(i).schema(), renameCols, fieldNames, false)); } else { // deal with default value if (fields.get(i).defaultVal() instanceof JsonProperties.Null) { newRecord.put(i, null); } else { newRecord.put(i, fields.get(i).defaultVal()); } } } fieldNames.pop(); } return newRecord; case ENUM: ValidationUtils.checkArgument( oldSchema.getType() == Schema.Type.STRING || oldSchema.getType() == Schema.Type.ENUM, "Only ENUM or STRING type can be converted ENUM type"); if (oldSchema.getType() == Schema.Type.STRING) { return new GenericData.EnumSymbol(newSchema, oldRecord); } return oldRecord; case ARRAY: ValidationUtils.checkArgument(oldRecord instanceof Collection, "cannot rewrite record with different type"); Collection array = (Collection) oldRecord; List newArray = new ArrayList<>(array.size()); fieldNames.push("element"); for (Object element : array) { newArray.add(rewriteRecordWithNewSchema(element, oldSchema.getElementType(), newSchema.getElementType(), renameCols, fieldNames, false)); } fieldNames.pop(); return newArray; case MAP: ValidationUtils.checkArgument(oldRecord instanceof Map, "cannot rewrite record with different type"); Map map = (Map) oldRecord; Map newMap = new HashMap<>(map.size(), 1.0f); fieldNames.push("value"); for (Map.Entry entry : map.entrySet()) { newMap.put(entry.getKey(), rewriteRecordWithNewSchema(entry.getValue(), oldSchema.getValueType(), newSchema.getValueType(), renameCols, fieldNames, false)); } fieldNames.pop(); return newMap; case UNION: return rewriteRecordWithNewSchema(oldRecord, getActualSchemaFromUnion(oldSchema, oldRecord), getActualSchemaFromUnion(newSchema, oldRecord), renameCols, fieldNames, false); default: return rewritePrimaryType(oldRecord, oldSchema, newSchema); } } public static String createFullName(Deque fieldNames) { String result = ""; if (!fieldNames.isEmpty()) { List parentNames = new ArrayList<>(); fieldNames.descendingIterator().forEachRemaining(parentNames::add); result = parentNames.stream().collect(Collectors.joining(".")); } return result; } private static Object rewritePrimaryType(Object oldValue, Schema oldSchema, Schema newSchema) { if (oldSchema.getType() == newSchema.getType()) { switch (oldSchema.getType()) { case NULL: case BOOLEAN: case INT: case LONG: case FLOAT: case DOUBLE: case BYTES: case STRING: return oldValue; case FIXED: if (oldSchema.getFixedSize() != newSchema.getFixedSize()) { // Check whether this is a [[Decimal]]'s precision change if (oldSchema.getLogicalType() instanceof Decimal) { final byte[] bytes; bytes = ((GenericFixed) oldValue).bytes(); Decimal decimal = (Decimal) oldSchema.getLogicalType(); BigDecimal bd = new BigDecimal(new BigInteger(bytes), decimal.getScale()).setScale(((Decimal) newSchema.getLogicalType()).getScale()); return DECIMAL_CONVERSION.toFixed(bd, newSchema, newSchema.getLogicalType()); } else { throw new UnsupportedOperationException("Fixed type size change is not currently supported"); } } // For [[Fixed]] data type both size and name have to match // // NOTE: That for values wrapped into [[Union]], to make sure that reverse lookup (by // full-name) is working we have to make sure that both schema's name and namespace // do match if (Objects.equals(oldSchema.getFullName(), newSchema.getFullName())) { return oldValue; } else { return new GenericData.Fixed(newSchema, ((GenericFixed) oldValue).bytes()); } default: throw new AvroRuntimeException("Unknown schema type: " + newSchema.getType()); } } else { return rewritePrimaryTypeWithDiffSchemaType(oldValue, oldSchema, newSchema); } } private static Object rewritePrimaryTypeWithDiffSchemaType(Object oldValue, Schema oldSchema, Schema newSchema) { switch (newSchema.getType()) { case NULL: case BOOLEAN: break; case INT: if (newSchema.getLogicalType() == LogicalTypes.date() && oldSchema.getType() == Schema.Type.STRING) { return fromJavaDate(java.sql.Date.valueOf(oldValue.toString())); } break; case LONG: if (oldSchema.getType() == Schema.Type.INT) { return ((Integer) oldValue).longValue(); } break; case FLOAT: if ((oldSchema.getType() == Schema.Type.INT) || (oldSchema.getType() == Schema.Type.LONG)) { return oldSchema.getType() == Schema.Type.INT ? ((Integer) oldValue).floatValue() : ((Long) oldValue).floatValue(); } break; case DOUBLE: if (oldSchema.getType() == Schema.Type.FLOAT) { // java float cannot convert to double directly, deal with float precision change return Double.valueOf(oldValue + ""); } else if (oldSchema.getType() == Schema.Type.INT) { return ((Integer) oldValue).doubleValue(); } else if (oldSchema.getType() == Schema.Type.LONG) { return ((Long) oldValue).doubleValue(); } break; case BYTES: if (oldSchema.getType() == Schema.Type.STRING) { return ByteBuffer.wrap((oldValue.toString()).getBytes(StandardCharsets.UTF_8)); } break; case STRING: if (oldSchema.getType() == Schema.Type.ENUM) { return String.valueOf(oldValue); } if (oldSchema.getType() == Schema.Type.BYTES) { return String.valueOf(((ByteBuffer) oldValue)); } if (oldSchema.getLogicalType() == LogicalTypes.date()) { return toJavaDate((Integer) oldValue).toString(); } if (oldSchema.getType() == Schema.Type.INT || oldSchema.getType() == Schema.Type.LONG || oldSchema.getType() == Schema.Type.FLOAT || oldSchema.getType() == Schema.Type.DOUBLE) { return oldValue.toString(); } if (oldSchema.getType() == Schema.Type.FIXED && oldSchema.getLogicalType() instanceof LogicalTypes.Decimal) { final byte[] bytes; bytes = ((GenericFixed) oldValue).bytes(); LogicalTypes.Decimal decimal = (LogicalTypes.Decimal) oldSchema.getLogicalType(); BigDecimal bd = new BigDecimal(new BigInteger(bytes), decimal.getScale()); return bd.toString(); } break; case FIXED: // deal with decimal Type if (newSchema.getLogicalType() instanceof LogicalTypes.Decimal) { // TODO: support more types if (oldSchema.getType() == Schema.Type.STRING || oldSchema.getType() == Schema.Type.DOUBLE || oldSchema.getType() == Schema.Type.INT || oldSchema.getType() == Schema.Type.LONG || oldSchema.getType() == Schema.Type.FLOAT) { LogicalTypes.Decimal decimal = (LogicalTypes.Decimal) newSchema.getLogicalType(); // due to Java, there will be precision problems in direct conversion, we should use string instead of use double BigDecimal bigDecimal = new java.math.BigDecimal(oldValue.toString()).setScale(decimal.getScale(), RoundingMode.HALF_UP); return DECIMAL_CONVERSION.toFixed(bigDecimal, newSchema, newSchema.getLogicalType()); } } break; default: } throw new AvroRuntimeException(String.format("cannot support rewrite value for schema type: %s since the old schema type is: %s", newSchema, oldSchema)); } /** * Avro does not support type promotion from numbers to string. This function returns true if * it will be necessary to rewrite the record to support this promotion. * NOTE: this does not determine whether the writerSchema and readerSchema are compatible. * It is just trying to find if the reader expects a number to be promoted to string, as quick as possible. */ public static boolean recordNeedsRewriteForExtendedAvroTypePromotion(Schema writerSchema, Schema readerSchema) { if (writerSchema.equals(readerSchema)) { return false; } switch (readerSchema.getType()) { case RECORD: Map writerFields = new HashMap<>(); for (Schema.Field field : writerSchema.getFields()) { writerFields.put(field.name(), field); } for (Schema.Field field : readerSchema.getFields()) { if (writerFields.containsKey(field.name())) { if (recordNeedsRewriteForExtendedAvroTypePromotion(writerFields.get(field.name()).schema(), field.schema())) { return true; } } } return false; case ARRAY: if (writerSchema.getType().equals(ARRAY)) { return recordNeedsRewriteForExtendedAvroTypePromotion(writerSchema.getElementType(), readerSchema.getElementType()); } return false; case MAP: if (writerSchema.getType().equals(MAP)) { return recordNeedsRewriteForExtendedAvroTypePromotion(writerSchema.getValueType(), readerSchema.getValueType()); } return false; case UNION: return recordNeedsRewriteForExtendedAvroTypePromotion(getActualSchemaFromUnion(writerSchema, null), getActualSchemaFromUnion(readerSchema, null)); case ENUM: case STRING: case BYTES: return needsRewriteToString(writerSchema); default: return false; } } /** * Helper for recordNeedsRewriteForExtendedAvroSchemaEvolution. Returns true if schema type is * int, long, float, double, or bytes because avro doesn't support evolution from those types to * string so some intervention is needed */ private static boolean needsRewriteToString(Schema schema) { switch (schema.getType()) { case INT: case LONG: case FLOAT: case DOUBLE: case BYTES: return true; default: return false; } } /** * convert days to Date *

* NOTE: This method could only be used in tests * * @VisibleForTesting */ public static java.sql.Date toJavaDate(int days) { LocalDate date = LocalDate.ofEpochDay(days); ZoneId defaultZoneId = ZoneId.systemDefault(); ZonedDateTime zonedDateTime = date.atStartOfDay(defaultZoneId); return new java.sql.Date(zonedDateTime.toInstant().toEpochMilli()); } /** * convert Date to days *

* NOTE: This method could only be used in tests * * @VisibleForTesting */ public static int fromJavaDate(Date date) { long millisUtc = date.getTime(); long millisLocal = millisUtc + TimeZone.getDefault().getOffset(millisUtc); int julianDays = Math.toIntExact(Math.floorDiv(millisLocal, MILLIS_PER_DAY)); return julianDays; } private static Schema getActualSchemaFromUnion(Schema schema, Object data) { Schema actualSchema; if (schema.getType() != UNION) { return schema; } if (schema.getTypes().size() == 2 && schema.getTypes().get(0).getType() == Schema.Type.NULL) { actualSchema = schema.getTypes().get(1); } else if (schema.getTypes().size() == 2 && schema.getTypes().get(1).getType() == Schema.Type.NULL) { actualSchema = schema.getTypes().get(0); } else if (schema.getTypes().size() == 1) { actualSchema = schema.getTypes().get(0); } else if (data == null) { return schema; } else { // deal complex union. this should not happen in hoodie, // since flink/spark do not write this type. int i = GenericData.get().resolveUnion(schema, data); actualSchema = schema.getTypes().get(i); } return actualSchema; } public static HoodieRecord createHoodieRecordFromAvro( IndexedRecord data, String payloadClass, String preCombineField, Option> simpleKeyGenFieldsOpt, Boolean withOperation, Option partitionNameOp, Boolean populateMetaFields, Option schemaWithoutMetaFields) { if (populateMetaFields) { return SpillableMapUtils.convertToHoodieRecordPayload((GenericRecord) data, payloadClass, preCombineField, withOperation); // Support HoodieFileSliceReader } else if (simpleKeyGenFieldsOpt.isPresent()) { // TODO in HoodieFileSliceReader may partitionName=option#empty return SpillableMapUtils.convertToHoodieRecordPayload((GenericRecord) data, payloadClass, preCombineField, simpleKeyGenFieldsOpt.get(), withOperation, partitionNameOp, schemaWithoutMetaFields); } else { return SpillableMapUtils.convertToHoodieRecordPayload((GenericRecord) data, payloadClass, preCombineField, withOperation, partitionNameOp, schemaWithoutMetaFields); } } /** * Given avro records, rewrites them with new schema. * * @param oldRecords oldRecords to be rewritten * @param newSchema newSchema used to rewrite oldRecord * @param renameCols a map store all rename cols, (k, v)-> (colNameFromNewSchema, colNameFromOldSchema) * @return a iterator of rewritten GenericRecords */ public static Iterator rewriteRecordWithNewSchema(Iterator oldRecords, Schema newSchema, Map renameCols, boolean validate) { if (oldRecords == null || newSchema == null) { return Collections.emptyIterator(); } return new Iterator() { @Override public boolean hasNext() { return oldRecords.hasNext(); } @Override public GenericRecord next() { return rewriteRecordWithNewSchema(oldRecords.next(), newSchema, renameCols, validate); } }; } public static Iterator rewriteRecordWithNewSchema(Iterator oldRecords, Schema newSchema, Map renameCols) { return rewriteRecordWithNewSchema(oldRecords, newSchema, Collections.EMPTY_MAP, false); } public static GenericRecord rewriteRecordDeep(GenericRecord oldRecord, Schema newSchema) { return rewriteRecordWithNewSchema(oldRecord, newSchema, Collections.EMPTY_MAP); } public static GenericRecord rewriteRecordDeep(GenericRecord oldRecord, Schema newSchema, boolean validate) { return rewriteRecordWithNewSchema(oldRecord, newSchema, Collections.EMPTY_MAP, validate); } public static boolean gteqAvro1_9() { return VersionUtil.compareVersions(AVRO_VERSION, "1.9") >= 0; } public static boolean gteqAvro1_10() { return VersionUtil.compareVersions(AVRO_VERSION, "1.10") >= 0; } /** * Wraps a value into Avro type wrapper. * * @param value Java value. * @return A wrapped value with Avro type wrapper. */ public static Object wrapValueIntoAvro(Comparable value) { if (value == null) { return null; } else if (value instanceof Date || value instanceof LocalDate) { // NOTE: Due to breaking changes in code-gen b/w Avro 1.8.2 and 1.10, we can't // rely on logical types to do proper encoding of the native Java types, // and hereby have to encode value manually LocalDate localDate = value instanceof LocalDate ? (LocalDate) value : ((Date) value).toLocalDate(); return DateWrapper.newBuilder(DATE_WRAPPER_BUILDER_STUB.get()) .setValue((int) localDate.toEpochDay()) .build(); } else if (value instanceof BigDecimal) { Schema valueSchema = DecimalWrapper.SCHEMA$.getField("value").schema(); BigDecimal upcastDecimal = tryUpcastDecimal((BigDecimal) value, (LogicalTypes.Decimal) valueSchema.getLogicalType()); return DecimalWrapper.newBuilder(DECIMAL_WRAPPER_BUILDER_STUB.get()) .setValue(AVRO_DECIMAL_CONVERSION.toBytes(upcastDecimal, valueSchema, valueSchema.getLogicalType())) .build(); } else if (value instanceof Timestamp) { // NOTE: Due to breaking changes in code-gen b/w Avro 1.8.2 and 1.10, we can't // rely on logical types to do proper encoding of the native Java types, // and hereby have to encode value manually Instant instant = ((Timestamp) value).toInstant(); return TimestampMicrosWrapper.newBuilder(TIMESTAMP_MICROS_WRAPPER_BUILDER_STUB.get()) .setValue(instantToMicros(instant)) .build(); } else if (value instanceof Boolean) { return BooleanWrapper.newBuilder(BOOLEAN_WRAPPER_BUILDER_STUB.get()).setValue((Boolean) value).build(); } else if (value instanceof Integer) { return IntWrapper.newBuilder(INT_WRAPPER_BUILDER_STUB.get()).setValue((Integer) value).build(); } else if (value instanceof Long) { return LongWrapper.newBuilder(LONG_WRAPPER_BUILDER_STUB.get()).setValue((Long) value).build(); } else if (value instanceof Float) { return FloatWrapper.newBuilder(FLOAT_WRAPPER_BUILDER_STUB.get()).setValue((Float) value).build(); } else if (value instanceof Double) { return DoubleWrapper.newBuilder(DOUBLE_WRAPPER_BUILDER_STUB.get()).setValue((Double) value).build(); } else if (value instanceof ByteBuffer) { return BytesWrapper.newBuilder(BYTES_WRAPPER_BUILDER_STUB.get()).setValue((ByteBuffer) value).build(); } else if (value instanceof String || value instanceof Utf8) { return StringWrapper.newBuilder(STRING_WRAPPER_BUILDER_STUB.get()).setValue(value.toString()).build(); } else { throw new UnsupportedOperationException(String.format("Unsupported type of the value (%s)", value.getClass())); } } /** * Unwraps Avro value wrapper into Java value. * * @param avroValueWrapper A wrapped value with Avro type wrapper. * @return Java value. */ public static Comparable unwrapAvroValueWrapper(Object avroValueWrapper) { if (avroValueWrapper == null) { return null; } else if (avroValueWrapper instanceof DateWrapper) { return LocalDate.ofEpochDay(((DateWrapper) avroValueWrapper).getValue()); } else if (avroValueWrapper instanceof DecimalWrapper) { Schema valueSchema = DecimalWrapper.SCHEMA$.getField("value").schema(); return AVRO_DECIMAL_CONVERSION.fromBytes(((DecimalWrapper) avroValueWrapper).getValue(), valueSchema, valueSchema.getLogicalType()); } else if (avroValueWrapper instanceof TimestampMicrosWrapper) { return microsToInstant(((TimestampMicrosWrapper) avroValueWrapper).getValue()); } else if (avroValueWrapper instanceof BooleanWrapper) { return ((BooleanWrapper) avroValueWrapper).getValue(); } else if (avroValueWrapper instanceof IntWrapper) { return ((IntWrapper) avroValueWrapper).getValue(); } else if (avroValueWrapper instanceof LongWrapper) { return ((LongWrapper) avroValueWrapper).getValue(); } else if (avroValueWrapper instanceof FloatWrapper) { return ((FloatWrapper) avroValueWrapper).getValue(); } else if (avroValueWrapper instanceof DoubleWrapper) { return ((DoubleWrapper) avroValueWrapper).getValue(); } else if (avroValueWrapper instanceof BytesWrapper) { return ((BytesWrapper) avroValueWrapper).getValue(); } else if (avroValueWrapper instanceof StringWrapper) { return ((StringWrapper) avroValueWrapper).getValue(); } else if (avroValueWrapper instanceof GenericRecord) { // NOTE: This branch could be hit b/c Avro records could be reconstructed // as {@code GenericRecord) // TODO add logical type decoding GenericRecord record = (GenericRecord) avroValueWrapper; return (Comparable) record.get("value"); } else { throw new UnsupportedOperationException(String.format("Unsupported type of the value (%s)", avroValueWrapper.getClass())); } } }