org.apache.hudi.sync.common.util.SparkDataSourceTableUtils Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hudi.sync.common.util;
import org.apache.hudi.common.util.ConfigUtils;
import org.apache.hudi.common.util.StringUtils;
import org.apache.parquet.schema.GroupType;
import org.apache.parquet.schema.MessageType;
import org.apache.parquet.schema.PrimitiveType;
import org.apache.parquet.schema.Type;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import static org.apache.parquet.schema.OriginalType.UTF8;
import static org.apache.parquet.schema.PrimitiveType.PrimitiveTypeName.BINARY;
public class SparkDataSourceTableUtils {
/**
* Get Spark Sql related table properties. This is used for spark datasource table.
* @param schema The schema to write to the table.
* @return A new parameters added the spark's table properties.
*/
public static Map getSparkTableProperties(List partitionNames, String sparkVersion,
int schemaLengthThreshold, MessageType schema) {
// Convert the schema and partition info used by spark sql to hive table properties.
// The following code refers to the spark code in
// https://github.com/apache/spark/blob/master/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveExternalCatalog.scala
GroupType originGroupType = schema.asGroupType();
List partitionCols = new ArrayList<>();
List dataCols = new ArrayList<>();
Map column2Field = new HashMap<>();
for (Type field : originGroupType.getFields()) {
column2Field.put(field.getName(), field);
}
// Get partition columns and data columns.
for (String partitionName : partitionNames) {
// Default the unknown partition fields to be String.
// Keep the same logical with HiveSchemaUtil#getPartitionKeyType.
partitionCols.add(column2Field.getOrDefault(partitionName,
new PrimitiveType(Type.Repetition.REQUIRED, BINARY, partitionName, UTF8)));
}
for (Type field : originGroupType.getFields()) {
if (!partitionNames.contains(field.getName())) {
dataCols.add(field);
}
}
List reOrderedFields = new ArrayList<>();
reOrderedFields.addAll(dataCols);
reOrderedFields.addAll(partitionCols);
GroupType reOrderedType = new GroupType(originGroupType.getRepetition(), originGroupType.getName(), reOrderedFields);
Map sparkProperties = new HashMap<>();
sparkProperties.put("spark.sql.sources.provider", "hudi");
if (!StringUtils.isNullOrEmpty(sparkVersion)) {
sparkProperties.put("spark.sql.create.version", sparkVersion);
}
// Split the schema string to multi-parts according the schemaLengthThreshold size.
String schemaString = Parquet2SparkSchemaUtils.convertToSparkSchemaJson(reOrderedType);
int numSchemaPart = (schemaString.length() + schemaLengthThreshold - 1) / schemaLengthThreshold;
sparkProperties.put("spark.sql.sources.schema.numParts", String.valueOf(numSchemaPart));
// Add each part of schema string to sparkProperties
for (int i = 0; i < numSchemaPart; i++) {
int start = i * schemaLengthThreshold;
int end = Math.min(start + schemaLengthThreshold, schemaString.length());
sparkProperties.put("spark.sql.sources.schema.part." + i, schemaString.substring(start, end));
}
// Add partition columns
if (!partitionNames.isEmpty()) {
sparkProperties.put("spark.sql.sources.schema.numPartCols", String.valueOf(partitionNames.size()));
for (int i = 0; i < partitionNames.size(); i++) {
sparkProperties.put("spark.sql.sources.schema.partCol." + i, partitionNames.get(i));
}
}
return sparkProperties;
}
public static Map getSparkSerdeProperties(boolean readAsOptimized, String basePath) {
Map sparkSerdeProperties = new HashMap<>();
sparkSerdeProperties.put(ConfigUtils.TABLE_SERDE_PATH, basePath);
sparkSerdeProperties.put(ConfigUtils.IS_QUERY_AS_RO_TABLE, String.valueOf(readAsOptimized));
return sparkSerdeProperties;
}
}