All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.sink.utils.Pipelines Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi.sink.utils;

import org.apache.hudi.common.model.ClusteringOperation;
import org.apache.hudi.common.model.HoodieKey;
import org.apache.hudi.common.model.HoodieRecord;
import org.apache.hudi.common.util.StringUtils;
import org.apache.hudi.configuration.FlinkOptions;
import org.apache.hudi.configuration.OptionsResolver;
import org.apache.hudi.exception.HoodieException;
import org.apache.hudi.exception.HoodieNotSupportedException;
import org.apache.hudi.index.HoodieIndex;
import org.apache.hudi.sink.CleanFunction;
import org.apache.hudi.sink.StreamWriteOperator;
import org.apache.hudi.sink.append.AppendWriteOperator;
import org.apache.hudi.sink.bootstrap.BootstrapOperator;
import org.apache.hudi.sink.bootstrap.batch.BatchBootstrapOperator;
import org.apache.hudi.sink.bucket.BucketBulkInsertWriterHelper;
import org.apache.hudi.sink.bucket.BucketStreamWriteOperator;
import org.apache.hudi.sink.bucket.ConsistentBucketAssignFunction;
import org.apache.hudi.sink.bulk.BulkInsertWriteOperator;
import org.apache.hudi.sink.bulk.RowDataKeyGen;
import org.apache.hudi.sink.bulk.sort.SortOperatorGen;
import org.apache.hudi.sink.clustering.ClusteringCommitEvent;
import org.apache.hudi.sink.clustering.ClusteringCommitSink;
import org.apache.hudi.sink.clustering.ClusteringOperator;
import org.apache.hudi.sink.clustering.ClusteringPlanEvent;
import org.apache.hudi.sink.clustering.ClusteringPlanOperator;
import org.apache.hudi.sink.common.WriteOperatorFactory;
import org.apache.hudi.sink.compact.CompactOperator;
import org.apache.hudi.sink.compact.CompactionCommitEvent;
import org.apache.hudi.sink.compact.CompactionCommitSink;
import org.apache.hudi.sink.compact.CompactionPlanEvent;
import org.apache.hudi.sink.compact.CompactionPlanOperator;
import org.apache.hudi.sink.partitioner.BucketAssignFunction;
import org.apache.hudi.sink.partitioner.BucketIndexPartitioner;
import org.apache.hudi.sink.transform.RowDataToHoodieFunctions;
import org.apache.hudi.table.format.FilePathUtils;

import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.runtime.state.KeyGroupRangeAssignment;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSink;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.flink.streaming.api.operators.KeyedProcessOperator;
import org.apache.flink.streaming.api.operators.ProcessOperator;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.planner.plan.nodes.exec.utils.ExecNodeUtil;
import org.apache.flink.table.runtime.typeutils.InternalTypeInfo;
import org.apache.flink.table.types.logical.RowType;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.stream.Collectors;

/**
 * Utilities to generate all kinds of sub-pipelines.
 */
public class Pipelines {

  // The counter of operators, avoiding duplicate uids caused by the same operator
  private static final ConcurrentHashMap OPERATOR_COUNTERS = new ConcurrentHashMap<>();

  /**
   * Bulk insert the input dataset at once.
   *
   * 

By default, the input dataset would shuffle by the partition path first then * sort by the partition path before passing around to the write function. * The whole pipeline looks like the following: * *

   *      | input1 | ===\     /=== |sorter| === | task1 | (p1, p2)
   *                   shuffle
   *      | input2 | ===/     \=== |sorter| === | task2 | (p3, p4)
   *
   *      Note: Both input1 and input2's dataset come from partitions: p1, p2, p3, p4
   * 
* *

The write task switches to new file handle each time it receives a record * from the different partition path, the shuffle and sort would reduce small files. * *

The bulk insert should be run in batch execution mode. * * @param conf The configuration * @param rowType The input row type * @param dataStream The input data stream * @return the bulk insert data stream sink */ public static DataStreamSink bulkInsert(Configuration conf, RowType rowType, DataStream dataStream) { WriteOperatorFactory operatorFactory = BulkInsertWriteOperator.getFactory(conf, rowType); if (OptionsResolver.isBucketIndexType(conf)) { // TODO support bulk insert for consistent bucket index if (OptionsResolver.isConsistentHashingBucketIndexType(conf)) { throw new HoodieException( "Consistent hashing bucket index does not work with bulk insert using FLINK engine. Use simple bucket index or Spark engine."); } String indexKeys = OptionsResolver.getIndexKeyField(conf); int numBuckets = conf.getInteger(FlinkOptions.BUCKET_INDEX_NUM_BUCKETS); BucketIndexPartitioner partitioner = new BucketIndexPartitioner<>(numBuckets, indexKeys); RowDataKeyGen keyGen = RowDataKeyGen.instance(conf, rowType); RowType rowTypeWithFileId = BucketBulkInsertWriterHelper.rowTypeWithFileId(rowType); InternalTypeInfo typeInfo = InternalTypeInfo.of(rowTypeWithFileId); boolean needFixedFileIdSuffix = OptionsResolver.isNonBlockingConcurrencyControl(conf); Map bucketIdToFileId = new HashMap<>(); dataStream = dataStream.partitionCustom(partitioner, keyGen::getHoodieKey) .map(record -> BucketBulkInsertWriterHelper.rowWithFileId(bucketIdToFileId, keyGen, record, indexKeys, numBuckets, needFixedFileIdSuffix), typeInfo) .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); // same parallelism as write task to avoid shuffle if (conf.getBoolean(FlinkOptions.WRITE_BULK_INSERT_SORT_INPUT)) { SortOperatorGen sortOperatorGen = BucketBulkInsertWriterHelper.getFileIdSorterGen(rowTypeWithFileId); dataStream = dataStream.transform("file_sorter", typeInfo, sortOperatorGen.createSortOperator(conf)) .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); // same parallelism as write task to avoid shuffle ExecNodeUtil.setManagedMemoryWeight(dataStream.getTransformation(), conf.getInteger(FlinkOptions.WRITE_SORT_MEMORY) * 1024L * 1024L); } return dataStream .transform(opName("bucket_bulk_insert", conf), TypeInformation.of(Object.class), operatorFactory) .uid(opUID("bucket_bulk_insert", conf)) .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)) .addSink(DummySink.INSTANCE) .name("dummy"); } final String[] partitionFields = FilePathUtils.extractPartitionKeys(conf); if (partitionFields.length > 0) { RowDataKeyGen rowDataKeyGen = RowDataKeyGen.instance(conf, rowType); if (conf.getBoolean(FlinkOptions.WRITE_BULK_INSERT_SHUFFLE_INPUT)) { // shuffle by partition keys // use #partitionCustom instead of #keyBy to avoid duplicate sort operations, // see BatchExecutionUtils#applyBatchExecutionSettings for details. Partitioner partitioner = (key, channels) -> KeyGroupRangeAssignment.assignKeyToParallelOperator(key, KeyGroupRangeAssignment.computeDefaultMaxParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)), channels); dataStream = dataStream.partitionCustom(partitioner, rowDataKeyGen::getPartitionPath); } if (conf.getBoolean(FlinkOptions.WRITE_BULK_INSERT_SORT_INPUT)) { String[] sortFields = partitionFields; String operatorName = "sorter:(partition_key)"; if (conf.getBoolean(FlinkOptions.WRITE_BULK_INSERT_SORT_INPUT_BY_RECORD_KEY)) { String[] recordKeyFields = conf.getString(FlinkOptions.RECORD_KEY_FIELD).split(","); ArrayList sortList = new ArrayList<>(Arrays.asList(partitionFields)); Collections.addAll(sortList, recordKeyFields); sortFields = sortList.toArray(new String[0]); operatorName = "sorter:(partition_key, record_key)"; } SortOperatorGen sortOperatorGen = new SortOperatorGen(rowType, sortFields); // sort by partition keys or (partition keys and record keys) dataStream = dataStream .transform(operatorName, InternalTypeInfo.of(rowType), sortOperatorGen.createSortOperator(conf)) .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); ExecNodeUtil.setManagedMemoryWeight(dataStream.getTransformation(), conf.getInteger(FlinkOptions.WRITE_SORT_MEMORY) * 1024L * 1024L); } } return dataStream .transform(opName("hoodie_bulk_insert_write", conf), TypeInformation.of(Object.class), operatorFactory) // follow the parallelism of upstream operators to avoid shuffle .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)) .addSink(DummySink.INSTANCE) .name("dummy"); } /** * Insert the dataset with append mode(no upsert or deduplication). * *

The input dataset would be rebalanced among the write tasks: * *

   *      | input1 | ===\     /=== | task1 | (p1, p2, p3, p4)
   *                   shuffle
   *      | input2 | ===/     \=== | task2 | (p1, p2, p3, p4)
   *
   *      Note: Both input1 and input2's dataset come from partitions: p1, p2, p3, p4
   * 
* *

The write task switches to new file handle each time it receives a record * from the different partition path, so there may be many small files. * * @param conf The configuration * @param rowType The input row type * @param dataStream The input data stream * @return the appending data stream sink */ public static DataStream append( Configuration conf, RowType rowType, DataStream dataStream) { WriteOperatorFactory operatorFactory = AppendWriteOperator.getFactory(conf, rowType); return dataStream .transform(opName("hoodie_append_write", conf), TypeInformation.of(Object.class), operatorFactory) .uid(opUID("hoodie_stream_write", conf)) .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); } /** * Constructs bootstrap pipeline as streaming. * The bootstrap operator loads the existing data index (primary key to file id mapping), * then sends the indexing data set to subsequent operator(usually the bucket assign operator). */ public static DataStream bootstrap( Configuration conf, RowType rowType, DataStream dataStream) { return bootstrap(conf, rowType, dataStream, false, false); } /** * Constructs bootstrap pipeline. * The bootstrap operator loads the existing data index (primary key to file id mapping), * then send the indexing data set to subsequent operator(usually the bucket assign operator). * * @param conf The configuration * @param rowType The row type * @param dataStream The data stream * @param bounded Whether the source is bounded * @param overwrite Whether it is insert overwrite */ public static DataStream bootstrap( Configuration conf, RowType rowType, DataStream dataStream, boolean bounded, boolean overwrite) { final boolean globalIndex = conf.getBoolean(FlinkOptions.INDEX_GLOBAL_ENABLED); if (overwrite || OptionsResolver.isBucketIndexType(conf)) { return rowDataToHoodieRecord(conf, rowType, dataStream); } else if (bounded && !globalIndex && OptionsResolver.isPartitionedTable(conf)) { return boundedBootstrap(conf, rowType, dataStream); } else { return streamBootstrap(conf, rowType, dataStream, bounded); } } private static DataStream streamBootstrap( Configuration conf, RowType rowType, DataStream dataStream, boolean bounded) { DataStream dataStream1 = rowDataToHoodieRecord(conf, rowType, dataStream); if (conf.getBoolean(FlinkOptions.INDEX_BOOTSTRAP_ENABLED) || bounded) { dataStream1 = dataStream1 .transform( "index_bootstrap", TypeInformation.of(HoodieRecord.class), new BootstrapOperator<>(conf)) .setParallelism(conf.getOptional(FlinkOptions.INDEX_BOOTSTRAP_TASKS).orElse(dataStream1.getParallelism())) .uid(opUID("index_bootstrap", conf)); } return dataStream1; } /** * Constructs bootstrap pipeline for batch execution mode. * The indexing data set is loaded before the actual data write * in order to support batch UPSERT. */ private static DataStream boundedBootstrap( Configuration conf, RowType rowType, DataStream dataStream) { final RowDataKeyGen rowDataKeyGen = RowDataKeyGen.instance(conf, rowType); // shuffle by partition keys dataStream = dataStream .keyBy(rowDataKeyGen::getPartitionPath); return rowDataToHoodieRecord(conf, rowType, dataStream) .transform( "batch_index_bootstrap", TypeInformation.of(HoodieRecord.class), new BatchBootstrapOperator<>(conf)) .setParallelism(conf.getOptional(FlinkOptions.INDEX_BOOTSTRAP_TASKS).orElse(dataStream.getParallelism())) .uid(opUID("batch_index_bootstrap", conf)); } /** * Transforms the row data to hoodie records. */ public static DataStream rowDataToHoodieRecord(Configuration conf, RowType rowType, DataStream dataStream) { return dataStream.map(RowDataToHoodieFunctions.create(rowType, conf), TypeInformation.of(HoodieRecord.class)) .setParallelism(dataStream.getParallelism()).name("row_data_to_hoodie_record"); } /** * The streaming write pipeline. * *

The input dataset shuffles by the primary key first then * shuffles by the file group ID before passing around to the write function. * The whole pipeline looks like the following: * *

   *      | input1 | ===\     /=== | bucket assigner | ===\     /=== | task1 |
   *                   shuffle(by PK)                    shuffle(by bucket ID)
   *      | input2 | ===/     \=== | bucket assigner | ===/     \=== | task2 |
   *
   *      Note: a file group must be handled by one write task to avoid write conflict.
   * 
* *

The bucket assigner assigns the inputs to suitable file groups, the write task caches * and flushes the data set to disk. * * @param conf The configuration * @param dataStream The input data stream * @return the stream write data stream pipeline */ public static DataStream hoodieStreamWrite(Configuration conf, DataStream dataStream) { if (OptionsResolver.isBucketIndexType(conf)) { HoodieIndex.BucketIndexEngineType bucketIndexEngineType = OptionsResolver.getBucketEngineType(conf); switch (bucketIndexEngineType) { case SIMPLE: int bucketNum = conf.getInteger(FlinkOptions.BUCKET_INDEX_NUM_BUCKETS); String indexKeyFields = OptionsResolver.getIndexKeyField(conf); BucketIndexPartitioner partitioner = new BucketIndexPartitioner<>(bucketNum, indexKeyFields); return dataStream.partitionCustom(partitioner, HoodieRecord::getKey) .transform( opName("bucket_write", conf), TypeInformation.of(Object.class), BucketStreamWriteOperator.getFactory(conf)) .uid(opUID("bucket_write", conf)) .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); case CONSISTENT_HASHING: if (OptionsResolver.isInsertOverwrite(conf)) { // TODO support insert overwrite for consistent bucket index throw new HoodieException("Consistent hashing bucket index does not work with insert overwrite using FLINK engine. Use simple bucket index or Spark engine."); } return dataStream .transform( opName("consistent_bucket_assigner", conf), TypeInformation.of(HoodieRecord.class), new ProcessOperator<>(new ConsistentBucketAssignFunction(conf))) .uid(opUID("consistent_bucket_assigner", conf)) .setParallelism(conf.getInteger(FlinkOptions.BUCKET_ASSIGN_TASKS)) .keyBy(record -> record.getCurrentLocation().getFileId()) .transform( opName("consistent_bucket_write", conf), TypeInformation.of(Object.class), BucketStreamWriteOperator.getFactory(conf)) .uid(opUID("consistent_bucket_write", conf)) .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); default: throw new HoodieNotSupportedException("Unknown bucket index engine type: " + bucketIndexEngineType); } } else { WriteOperatorFactory operatorFactory = StreamWriteOperator.getFactory(conf); return dataStream // Key-by record key, to avoid multiple subtasks write to a bucket at the same time .keyBy(HoodieRecord::getRecordKey) .transform( "bucket_assigner", TypeInformation.of(HoodieRecord.class), new KeyedProcessOperator<>(new BucketAssignFunction<>(conf))) .uid(opUID("bucket_assigner", conf)) .setParallelism(conf.getInteger(FlinkOptions.BUCKET_ASSIGN_TASKS)) // shuffle by fileId(bucket id) .keyBy(record -> record.getCurrentLocation().getFileId()) .transform(opName("stream_write", conf), TypeInformation.of(Object.class), operatorFactory) .uid(opUID("stream_write", conf)) .setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); } } /** * The compaction tasks pipeline. * *

The compaction plan operator monitors the new compaction plan on the timeline * then distributes the sub-plans to the compaction tasks. The compaction task then * handle over the metadata to commit task for compaction transaction commit. * The whole pipeline looks like the following: * *

   *                                     /=== | task1 | ===\
   *      | plan generation | ===> hash                      | commit |
   *                                     \=== | task2 | ===/
   *
   *      Note: both the compaction plan generation task and commission task are singleton.
   * 
* * @param conf The configuration * @param dataStream The input data stream * @return the compaction pipeline */ public static DataStreamSink compact(Configuration conf, DataStream dataStream) { DataStreamSink compactionCommitEventDataStream = dataStream.transform("compact_plan_generate", TypeInformation.of(CompactionPlanEvent.class), new CompactionPlanOperator(conf)) .setParallelism(1) // plan generate must be singleton .setMaxParallelism(1) .partitionCustom(new IndexPartitioner(), CompactionPlanEvent::getIndex) .transform("compact_task", TypeInformation.of(CompactionCommitEvent.class), new CompactOperator(conf)) .setParallelism(conf.getInteger(FlinkOptions.COMPACTION_TASKS)) .addSink(new CompactionCommitSink(conf)) .name("compact_commit") .setParallelism(1); // compaction commit should be singleton compactionCommitEventDataStream.getTransformation().setMaxParallelism(1); return compactionCommitEventDataStream; } /** * The clustering tasks pipeline. * *

The clustering plan operator monitors the new clustering plan on the timeline * then distributes the sub-plans to the clustering tasks. The clustering task then * handle over the metadata to commit task for clustering transaction commit. * The whole pipeline looks like the following: * *

   *                                     /=== | task1 | ===\
   *      | plan generation | ===> hash                      | commit |
   *                                     \=== | task2 | ===/
   *
   *      Note: both the clustering plan generation task and commission task are singleton.
   * 
* * @param conf The configuration * @param rowType The input row type * @param dataStream The input data stream * @return the clustering pipeline */ public static DataStreamSink cluster(Configuration conf, RowType rowType, DataStream dataStream) { DataStream clusteringStream = dataStream.transform("cluster_plan_generate", TypeInformation.of(ClusteringPlanEvent.class), new ClusteringPlanOperator(conf)) .setParallelism(1) // plan generate must be singleton .setMaxParallelism(1) // plan generate must be singleton .keyBy(plan -> // make the distribution strategy deterministic to avoid concurrent modifications // on the same bucket files plan.getClusteringGroupInfo().getOperations() .stream().map(ClusteringOperation::getFileId).collect(Collectors.joining())) .transform("clustering_task", TypeInformation.of(ClusteringCommitEvent.class), new ClusteringOperator(conf, rowType)) .setParallelism(conf.getInteger(FlinkOptions.CLUSTERING_TASKS)); if (OptionsResolver.sortClusteringEnabled(conf)) { ExecNodeUtil.setManagedMemoryWeight(clusteringStream.getTransformation(), conf.getInteger(FlinkOptions.WRITE_SORT_MEMORY) * 1024L * 1024L); } DataStreamSink clusteringCommitEventDataStream = clusteringStream.addSink(new ClusteringCommitSink(conf)) .name("clustering_commit") .setParallelism(1); // clustering commit should be singleton clusteringCommitEventDataStream.getTransformation().setMaxParallelism(1); return clusteringCommitEventDataStream; } public static DataStreamSink clean(Configuration conf, DataStream dataStream) { DataStreamSink cleanCommitDataStream = dataStream.addSink(new CleanFunction<>(conf)) .setParallelism(1) .name("clean_commits"); cleanCommitDataStream.getTransformation().setMaxParallelism(1); return cleanCommitDataStream; } public static DataStreamSink dummySink(DataStream dataStream) { return dataStream.addSink(Pipelines.DummySink.INSTANCE) .setParallelism(1) .name("dummy"); } public static String opName(String operatorN, Configuration conf) { return operatorN + ": " + getTablePath(conf); } public static String opUID(String operatorN, Configuration conf) { Integer operatorCount = OPERATOR_COUNTERS.merge(operatorN, 1, (oldValue, value) -> oldValue + value); return "uid_" + operatorN + (operatorCount == 1 ? "" : "_" + (operatorCount - 1)) + "_" + getTablePath(conf); } public static String getTablePath(Configuration conf) { String databaseName = conf.getString(FlinkOptions.DATABASE_NAME); return StringUtils.isNullOrEmpty(databaseName) ? conf.getString(FlinkOptions.TABLE_NAME) : databaseName + "." + conf.getString(FlinkOptions.TABLE_NAME); } /** * Dummy sink that does nothing. */ public static class DummySink implements SinkFunction { private static final long serialVersionUID = 1L; public static DummySink INSTANCE = new DummySink(); } public static class IndexPartitioner implements Partitioner { @Override public int partition(Integer key, int numPartitions) { return key % numPartitions; } } }