All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.benmanes.caffeine.cache.MpscGrowableArrayQueue Maven / Gradle / Ivy

/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.github.benmanes.caffeine.cache;

import static com.github.benmanes.caffeine.cache.Caffeine.ceilingPowerOfTwo;
import static com.github.benmanes.caffeine.cache.UnsafeAccess.UNSAFE;
import static com.github.benmanes.caffeine.cache.UnsafeRefArrayAccess.REF_ARRAY_BASE;
import static com.github.benmanes.caffeine.cache.UnsafeRefArrayAccess.REF_ELEMENT_SHIFT;
import static com.github.benmanes.caffeine.cache.UnsafeRefArrayAccess.lvElement;
import static com.github.benmanes.caffeine.cache.UnsafeRefArrayAccess.soElement;

import java.lang.reflect.Field;
import java.util.AbstractQueue;
import java.util.Iterator;

/**
 * An MPSC array queue which starts at initialCapacity and grows to maxCapacity in
 * linked chunks of the initial size. The queue grows only when the current buffer is full and
 * elements are not copied on resize, instead a link to the new buffer is stored in the old buffer
 * for the consumer to follow.
*

* This is a shaded copy of MpscGrowableArrayQueue provided by * JCTools from version 2.0. * * @author [email protected] (Nitsan Wakart) */ final class MpscGrowableArrayQueue extends MpscChunkedArrayQueue { /** * @param initialCapacity the queue initial capacity. If chunk size is fixed this will be the * chunk size. Must be 2 or more. * @param maxCapacity the maximum capacity will be rounded up to the closest power of 2 and will * be the upper limit of number of elements in this queue. Must be 4 or more and round up * to a larger power of 2 than initialCapacity. */ MpscGrowableArrayQueue(int initialCapacity, int maxCapacity) { super(initialCapacity, maxCapacity); } @Override protected int getNextBufferSize(E[] buffer) { long maxSize = maxQueueCapacity / 2; if (buffer.length > maxSize) { throw new IllegalStateException(); } final int newSize = 2 * (buffer.length - 1); return newSize + 1; } @Override protected long getCurrentBufferCapacity(long mask) { return (mask + 2 == maxQueueCapacity) ? maxQueueCapacity : mask; } } @SuppressWarnings("OvershadowingSubclassFields") abstract class MpscChunkedArrayQueue extends MpscChunkedArrayQueueColdProducerFields { byte p000, p001, p002, p003, p004, p005, p006, p007; byte p008, p009, p010, p011, p012, p013, p014, p015; byte p016, p017, p018, p019, p020, p021, p022, p023; byte p024, p025, p026, p027, p028, p029, p030, p031; byte p032, p033, p034, p035, p036, p037, p038, p039; byte p040, p041, p042, p043, p044, p045, p046, p047; byte p048, p049, p050, p051, p052, p053, p054, p055; byte p056, p057, p058, p059, p060, p061, p062, p063; byte p064, p065, p066, p067, p068, p069, p070, p071; byte p072, p073, p074, p075, p076, p077, p078, p079; byte p080, p081, p082, p083, p084, p085, p086, p087; byte p088, p089, p090, p091, p092, p093, p094, p095; byte p096, p097, p098, p099, p100, p101, p102, p103; byte p104, p105, p106, p107, p108, p109, p110, p111; byte p112, p113, p114, p115, p116, p117, p118, p119; MpscChunkedArrayQueue(int initialCapacity, int maxCapacity) { super(initialCapacity, maxCapacity); } @Override protected long availableInQueue(long pIndex, long cIndex) { return maxQueueCapacity - (pIndex - cIndex); } @Override public int capacity() { return (int) (maxQueueCapacity / 2); } @Override protected int getNextBufferSize(E[] buffer) { return buffer.length; } @Override protected long getCurrentBufferCapacity(long mask) { return mask; } } abstract class MpscChunkedArrayQueueColdProducerFields extends BaseMpscLinkedArrayQueue { protected final long maxQueueCapacity; MpscChunkedArrayQueueColdProducerFields(int initialCapacity, int maxCapacity) { super(initialCapacity); if (maxCapacity < 4) { throw new IllegalArgumentException("Max capacity must be 4 or more"); } if (ceilingPowerOfTwo(initialCapacity) >= ceilingPowerOfTwo(maxCapacity)) { throw new IllegalArgumentException( "Initial capacity cannot exceed maximum capacity(both rounded up to a power of 2)"); } maxQueueCapacity = ((long) ceilingPowerOfTwo(maxCapacity)) << 1; } } abstract class BaseMpscLinkedArrayQueuePad1 extends AbstractQueue { byte p000, p001, p002, p003, p004, p005, p006, p007; byte p008, p009, p010, p011, p012, p013, p014, p015; byte p016, p017, p018, p019, p020, p021, p022, p023; byte p024, p025, p026, p027, p028, p029, p030, p031; byte p032, p033, p034, p035, p036, p037, p038, p039; byte p040, p041, p042, p043, p044, p045, p046, p047; byte p048, p049, p050, p051, p052, p053, p054, p055; byte p056, p057, p058, p059, p060, p061, p062, p063; byte p064, p065, p066, p067, p068, p069, p070, p071; byte p072, p073, p074, p075, p076, p077, p078, p079; byte p080, p081, p082, p083, p084, p085, p086, p087; byte p088, p089, p090, p091, p092, p093, p094, p095; byte p096, p097, p098, p099, p100, p101, p102, p103; byte p104, p105, p106, p107, p108, p109, p110, p111; byte p112, p113, p114, p115, p116, p117, p118, p119; } abstract class BaseMpscLinkedArrayQueueProducerFields extends BaseMpscLinkedArrayQueuePad1 { protected long producerIndex; } @SuppressWarnings("OvershadowingSubclassFields") abstract class BaseMpscLinkedArrayQueuePad2 extends BaseMpscLinkedArrayQueueProducerFields { byte p000, p001, p002, p003, p004, p005, p006, p007; byte p008, p009, p010, p011, p012, p013, p014, p015; byte p016, p017, p018, p019, p020, p021, p022, p023; byte p024, p025, p026, p027, p028, p029, p030, p031; byte p032, p033, p034, p035, p036, p037, p038, p039; byte p040, p041, p042, p043, p044, p045, p046, p047; byte p048, p049, p050, p051, p052, p053, p054, p055; byte p056, p057, p058, p059, p060, p061, p062, p063; byte p064, p065, p066, p067, p068, p069, p070, p071; byte p072, p073, p074, p075, p076, p077, p078, p079; byte p080, p081, p082, p083, p084, p085, p086, p087; byte p088, p089, p090, p091, p092, p093, p094, p095; byte p096, p097, p098, p099, p100, p101, p102, p103; byte p104, p105, p106, p107, p108, p109, p110, p111; byte p112, p113, p114, p115, p116, p117, p118, p119; } @SuppressWarnings("NullAway") abstract class BaseMpscLinkedArrayQueueConsumerFields extends BaseMpscLinkedArrayQueuePad2 { protected long consumerMask; protected E[] consumerBuffer; protected long consumerIndex; } @SuppressWarnings("OvershadowingSubclassFields") abstract class BaseMpscLinkedArrayQueuePad3 extends BaseMpscLinkedArrayQueueConsumerFields { byte p000, p001, p002, p003, p004, p005, p006, p007; byte p008, p009, p010, p011, p012, p013, p014, p015; byte p016, p017, p018, p019, p020, p021, p022, p023; byte p024, p025, p026, p027, p028, p029, p030, p031; byte p032, p033, p034, p035, p036, p037, p038, p039; byte p040, p041, p042, p043, p044, p045, p046, p047; byte p048, p049, p050, p051, p052, p053, p054, p055; byte p056, p057, p058, p059, p060, p061, p062, p063; byte p064, p065, p066, p067, p068, p069, p070, p071; byte p072, p073, p074, p075, p076, p077, p078, p079; byte p080, p081, p082, p083, p084, p085, p086, p087; byte p088, p089, p090, p091, p092, p093, p094, p095; byte p096, p097, p098, p099, p100, p101, p102, p103; byte p104, p105, p106, p107, p108, p109, p110, p111; byte p112, p113, p114, p115, p116, p117, p118, p119; } @SuppressWarnings("NullAway") abstract class BaseMpscLinkedArrayQueueColdProducerFields extends BaseMpscLinkedArrayQueuePad3 { protected volatile long producerLimit; protected long producerMask; protected E[] producerBuffer; } @SuppressWarnings({"PMD", "NullAway", "restriction"}) abstract class BaseMpscLinkedArrayQueue extends BaseMpscLinkedArrayQueueColdProducerFields { // No post padding here, subclasses must add private final static long P_INDEX_OFFSET; private final static long C_INDEX_OFFSET; private final static long P_LIMIT_OFFSET; static { try { Field iField = BaseMpscLinkedArrayQueueProducerFields.class.getDeclaredField("producerIndex"); P_INDEX_OFFSET = UNSAFE.objectFieldOffset(iField); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } try { Field iField = BaseMpscLinkedArrayQueueConsumerFields.class.getDeclaredField("consumerIndex"); C_INDEX_OFFSET = UNSAFE.objectFieldOffset(iField); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } try { Field iField = BaseMpscLinkedArrayQueueColdProducerFields.class.getDeclaredField("producerLimit"); P_LIMIT_OFFSET = UNSAFE.objectFieldOffset(iField); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } } private final static Object JUMP = new Object(); /** * @param initialCapacity the queue initial capacity. If chunk size is fixed this will be the * chunk size. Must be 2 or more. */ BaseMpscLinkedArrayQueue(final int initialCapacity) { if (initialCapacity < 2) { throw new IllegalArgumentException("Initial capacity must be 2 or more"); } int p2capacity = ceilingPowerOfTwo(initialCapacity); // leave lower bit of mask clear long mask = (p2capacity - 1L) << 1; // need extra element to point at next array E[] buffer = allocate(p2capacity + 1); producerBuffer = buffer; producerMask = mask; consumerBuffer = buffer; consumerMask = mask; soProducerLimit(mask); // we know it's all empty to start with } @Override public final Iterator iterator() { throw new UnsupportedOperationException(); } @Override public String toString() { return getClass().getName() + "@" + Integer.toHexString(hashCode()); } @Override @SuppressWarnings("MissingDefault") public boolean offer(final E e) { if (null == e) { throw new NullPointerException(); } long mask; E[] buffer; long pIndex; while (true) { long producerLimit = lvProducerLimit(); pIndex = lvProducerIndex(); // lower bit is indicative of resize, if we see it we spin until it's cleared if ((pIndex & 1) == 1) { continue; } // pIndex is even (lower bit is 0) -> actual index is (pIndex >> 1) // mask/buffer may get changed by resizing -> only use for array access after successful CAS. mask = this.producerMask; buffer = this.producerBuffer; // a successful CAS ties the ordering, lv(pIndex)-[mask/buffer]->cas(pIndex) // assumption behind this optimization is that queue is almost always empty or near empty if (producerLimit <= pIndex) { int result = offerSlowPath(mask, pIndex, producerLimit); switch (result) { case 0: break; case 1: continue; case 2: return false; case 3: resize(mask, buffer, pIndex, e); return true; } } if (casProducerIndex(pIndex, pIndex + 2)) { break; } } // INDEX visible before ELEMENT, consistent with consumer expectation final long offset = modifiedCalcElementOffset(pIndex, mask); soElement(buffer, offset, e); return true; } /** * We do not inline resize into this method because we do not resize on fill. */ private int offerSlowPath(long mask, long pIndex, long producerLimit) { int result; final long cIndex = lvConsumerIndex(); long bufferCapacity = getCurrentBufferCapacity(mask); result = 0;// 0 - goto pIndex CAS if (cIndex + bufferCapacity > pIndex) { if (!casProducerLimit(producerLimit, cIndex + bufferCapacity)) { result = 1;// retry from top } } // full and cannot grow else if (availableInQueue(pIndex, cIndex) <= 0) { result = 2;// -> return false; } // grab index for resize -> set lower bit else if (casProducerIndex(pIndex, pIndex + 1)) { result = 3;// -> resize } else { result = 1;// failed resize attempt, retry from top } return result; } /** * @return available elements in queue * 2 */ protected abstract long availableInQueue(long pIndex, final long cIndex); /** * This method assumes index is actually (index << 1) because lower bit is used for resize. This * is compensated for by reducing the element shift. The computation is constant folded, so * there's no cost. */ private static long modifiedCalcElementOffset(long index, long mask) { return REF_ARRAY_BASE + ((index & mask) << (REF_ELEMENT_SHIFT - 1)); } /** * {@inheritDoc} *

* This implementation is correct for single consumer thread use only. */ @Override @SuppressWarnings("unchecked") public E poll() { final E[] buffer = consumerBuffer; final long index = consumerIndex; final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset);// LoadLoad if (e == null) { if (index != lvProducerIndex()) { // poll() == null iff queue is empty, null element is not strong enough indicator, so we // must // check the producer index. If the queue is indeed not empty we spin until element is // visible. do { e = lvElement(buffer, offset); } while (e == null); } else { return null; } } if (e == JUMP) { final E[] nextBuffer = getNextBuffer(buffer, mask); return newBufferPoll(nextBuffer, index); } soElement(buffer, offset, null); soConsumerIndex(index + 2); return (E) e; } /** * {@inheritDoc} *

* This implementation is correct for single consumer thread use only. */ @SuppressWarnings("unchecked") @Override public E peek() { final E[] buffer = consumerBuffer; final long index = consumerIndex; final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset);// LoadLoad if (e == null && index != lvProducerIndex()) { // peek() == null iff queue is empty, null element is not strong enough indicator, so we must // check the producer index. If the queue is indeed not empty we spin until element is // visible. while ((e = lvElement(buffer, offset)) == null) { ; } } if (e == JUMP) { return newBufferPeek(getNextBuffer(buffer, mask), index); } return (E) e; } @SuppressWarnings("unchecked") private E[] getNextBuffer(final E[] buffer, final long mask) { final long nextArrayOffset = nextArrayOffset(mask); final E[] nextBuffer = (E[]) lvElement(buffer, nextArrayOffset); soElement(buffer, nextArrayOffset, null); return nextBuffer; } private static long nextArrayOffset(final long mask) { return modifiedCalcElementOffset(mask + 2, Long.MAX_VALUE); } private E newBufferPoll(E[] nextBuffer, final long index) { final long offsetInNew = newBufferAndOffset(nextBuffer, index); final E n = lvElement(nextBuffer, offsetInNew);// LoadLoad if (n == null) { throw new IllegalStateException("new buffer must have at least one element"); } soElement(nextBuffer, offsetInNew, null);// StoreStore soConsumerIndex(index + 2); return n; } private E newBufferPeek(E[] nextBuffer, final long index) { final long offsetInNew = newBufferAndOffset(nextBuffer, index); final E n = lvElement(nextBuffer, offsetInNew);// LoadLoad if (null == n) { throw new IllegalStateException("new buffer must have at least one element"); } return n; } private long newBufferAndOffset(E[] nextBuffer, final long index) { consumerBuffer = nextBuffer; consumerMask = (nextBuffer.length - 2L) << 1; final long offsetInNew = modifiedCalcElementOffset(index, consumerMask); return offsetInNew; } @Override public final int size() { // NOTE: because indices are on even numbers we cannot use the size util. /* * It is possible for a thread to be interrupted or reschedule between the read of the producer * and consumer indices, therefore protection is required to ensure size is within valid range. * In the event of concurrent polls/offers to this method the size is OVER estimated as we read * consumer index BEFORE the producer index. */ long after = lvConsumerIndex(); long size; while (true) { final long before = after; final long currentProducerIndex = lvProducerIndex(); after = lvConsumerIndex(); if (before == after) { size = ((currentProducerIndex - after) >> 1); break; } } // Long overflow is impossible, so size is always positive. Integer overflow is possible for the // unbounded // indexed queues. if (size > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } else { return (int) size; } } @Override public final boolean isEmpty() { // Order matters! // Loading consumer before producer allows for producer increments after consumer index is read. // This ensures this method is conservative in it's estimate. Note that as this is an MPMC there // is // nothing we can do to make this an exact method. return (this.lvConsumerIndex() == this.lvProducerIndex()); } private long lvProducerIndex() { return UNSAFE.getLongVolatile(this, P_INDEX_OFFSET); } private long lvConsumerIndex() { return UNSAFE.getLongVolatile(this, C_INDEX_OFFSET); } private void soProducerIndex(long v) { UNSAFE.putOrderedLong(this, P_INDEX_OFFSET, v); } private boolean casProducerIndex(long expect, long newValue) { return UNSAFE.compareAndSwapLong(this, P_INDEX_OFFSET, expect, newValue); } private void soConsumerIndex(long v) { UNSAFE.putOrderedLong(this, C_INDEX_OFFSET, v); } private long lvProducerLimit() { return producerLimit; } private boolean casProducerLimit(long expect, long newValue) { return UNSAFE.compareAndSwapLong(this, P_LIMIT_OFFSET, expect, newValue); } private void soProducerLimit(long v) { UNSAFE.putOrderedLong(this, P_LIMIT_OFFSET, v); } public long currentProducerIndex() { return lvProducerIndex() / 2; } public long currentConsumerIndex() { return lvConsumerIndex() / 2; } public abstract int capacity(); public boolean relaxedOffer(E e) { return offer(e); } @SuppressWarnings("unchecked") public E relaxedPoll() { final E[] buffer = consumerBuffer; final long index = consumerIndex; final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset);// LoadLoad if (e == null) { return null; } if (e == JUMP) { final E[] nextBuffer = getNextBuffer(buffer, mask); return newBufferPoll(nextBuffer, index); } soElement(buffer, offset, null); soConsumerIndex(index + 2); return (E) e; } @SuppressWarnings("unchecked") public E relaxedPeek() { final E[] buffer = consumerBuffer; final long index = consumerIndex; final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset);// LoadLoad if (e == JUMP) { return newBufferPeek(getNextBuffer(buffer, mask), index); } return (E) e; } private void resize(long oldMask, E[] oldBuffer, long pIndex, final E e) { int newBufferLength = getNextBufferSize(oldBuffer); final E[] newBuffer = allocate(newBufferLength); producerBuffer = newBuffer; final int newMask = (newBufferLength - 2) << 1; producerMask = newMask; final long offsetInOld = modifiedCalcElementOffset(pIndex, oldMask); final long offsetInNew = modifiedCalcElementOffset(pIndex, newMask); soElement(newBuffer, offsetInNew, e);// element in new array soElement(oldBuffer, nextArrayOffset(oldMask), newBuffer);// buffer linked // ASSERT code final long cIndex = lvConsumerIndex(); final long availableInQueue = availableInQueue(pIndex, cIndex); if (availableInQueue <= 0) { throw new IllegalStateException(); } // Invalidate racing CASs // We never set the limit beyond the bounds of a buffer soProducerLimit(pIndex + Math.min(newMask, availableInQueue)); // make resize visible to the other producers soProducerIndex(pIndex + 2); // INDEX visible before ELEMENT, consistent with consumer expectation // make resize visible to consumer soElement(oldBuffer, offsetInOld, JUMP); } @SuppressWarnings("unchecked") public static E[] allocate(int capacity) { return (E[]) new Object[capacity]; } /** * @return next buffer size(inclusive of next array pointer) */ protected abstract int getNextBufferSize(E[] buffer); /** * @return current buffer capacity for elements (excluding next pointer and jump entry) * 2 */ protected abstract long getCurrentBufferCapacity(long mask); } /** * A concurrent access enabling class used by circular array based queues this class exposes an * offset computation method along with differently memory fenced load/store methods into the * underlying array. The class is pre-padded and the array is padded on either side to help with * False sharing prvention. It is expected theat subclasses handle post padding. *

* Offset calculation is separate from access to enable the reuse of a give compute offset. *

* Load/Store methods using a buffer parameter are provided to allow the prevention of final * field reload after a LoadLoad barrier. *

*/ @SuppressWarnings("restriction") final class UnsafeRefArrayAccess { public static final long REF_ARRAY_BASE; public static final int REF_ELEMENT_SHIFT; static { final int scale = UNSAFE.arrayIndexScale(Object[].class); if (4 == scale) { REF_ELEMENT_SHIFT = 2; } else if (8 == scale) { REF_ELEMENT_SHIFT = 3; } else { throw new IllegalStateException("Unknown pointer size"); } REF_ARRAY_BASE = UNSAFE.arrayBaseOffset(Object[].class); } private UnsafeRefArrayAccess() {} /** * A plain store (no ordering/fences) of an element to a given offset * * @param buffer this.buffer * @param offset computed via {@link UnsafeRefArrayAccess#calcElementOffset(long)} * @param e an orderly kitty */ public static void spElement(E[] buffer, long offset, E e) { UNSAFE.putObject(buffer, offset, e); } /** * An ordered store(store + StoreStore barrier) of an element to a given offset * * @param buffer this.buffer * @param offset computed via {@link UnsafeRefArrayAccess#calcElementOffset} * @param e an orderly kitty */ public static void soElement(E[] buffer, long offset, E e) { UNSAFE.putOrderedObject(buffer, offset, e); } /** * A plain load (no ordering/fences) of an element from a given offset. * * @param buffer this.buffer * @param offset computed via {@link UnsafeRefArrayAccess#calcElementOffset(long)} * @return the element at the offset */ @SuppressWarnings("unchecked") public static E lpElement(E[] buffer, long offset) { return (E) UNSAFE.getObject(buffer, offset); } /** * A volatile load (load + LoadLoad barrier) of an element from a given offset. * * @param buffer this.buffer * @param offset computed via {@link UnsafeRefArrayAccess#calcElementOffset(long)} * @return the element at the offset */ @SuppressWarnings("unchecked") public static E lvElement(E[] buffer, long offset) { return (E) UNSAFE.getObjectVolatile(buffer, offset); } /** * @param index desirable element index * @return the offset in bytes within the array for a given index. */ public static long calcElementOffset(long index) { return REF_ARRAY_BASE + (index << REF_ELEMENT_SHIFT); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy