All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.davidmoten.hilbert.HilbertCurve Maven / Gradle / Ivy

package org.davidmoten.hilbert;

import java.math.BigInteger;
import java.util.Arrays;

import com.github.davidmoten.guavamini.Preconditions;
import com.github.davidmoten.guavamini.annotations.VisibleForTesting;

/**
 * Converts between Hilbert index ({@code BigInteger}) and N-dimensional points.
 * 
 * 

* Note: This algorithm is derived from work done by John Skilling and published * in "Programming the Hilbert curve". (c) 2004 American Institute of Physics. * With thanks also to Paul Chernoch who published a C# algorithm for Skilling's * work on StackOverflow and * GitHub). */ public final class HilbertCurve { private final int bits; private final int dimensions; // cached calculations private final int length; private HilbertCurve(int bits, int dimensions) { this.bits = bits; this.dimensions = dimensions; // cache a calculated values for small perf improvements this.length = bits * dimensions; } /** * Returns a builder for and object that performs transformations for a Hilbert * curve with the given number of bits. * * @param bits * depth of the Hilbert curve. If bits is one, this is the top-level * Hilbert curve * @return builder for object to do transformations with the Hilbert Curve */ public static Builder bits(int bits) { return new Builder(bits); } public static SmallHilbertCurve.Builder small() { return new SmallHilbertCurve.Builder(); } /** * Builds a {@link HilbertCurve} instance. */ public static final class Builder { final int bits; private Builder(int bits) { Preconditions.checkArgument(bits > 0, "bits must be greater than zero"); Preconditions.checkArgument(bits < 64, "bits must be 63 or less"); this.bits = bits; } public HilbertCurve dimensions(int dimensions) { Preconditions.checkArgument(dimensions > 1, "dimensions must be at least 2"); return new HilbertCurve(bits, dimensions); } } /** * Converts a point to its Hilbert curve index. * * @param point * an array of {@code long}. Each ordinate can be between 0 and * 2bits-1. * @return index (nonnegative {@link BigInteger}) * @throws IllegalArgumentException * if length of point array is not equal to the number of * dimensions. */ public BigInteger index(long... point) { Preconditions.checkArgument(point.length == dimensions); return toIndex(transposedIndex(bits, point)); } /** * Converts a {@link BigInteger} index (distance along the Hilbert Curve from 0) * to a point of dimensions defined in the constructor of {@code this}. * * @param index * index along the Hilbert Curve from 0. Maximum value 2 bits * * dimensions-1. * @return array of longs being the point * @throws NullPointerException * if index is null * @throws IllegalArgumentException * if index is negative */ public long[] point(BigInteger index) { Preconditions.checkNotNull(index); Preconditions.checkArgument(index.signum() != -1, "index cannot be negative"); return transposedIndexToPoint(bits, transpose(index)); } public void point(BigInteger index, long[] x) { Preconditions.checkNotNull(index); Preconditions.checkArgument(index.signum() != -1, "index cannot be negative"); Util.zero(x); transpose(index, x); transposedIndexToPoint(bits, x); } public void point(long i, long[] x) { point(BigInteger.valueOf(i), x); } /** * Converts a {@code long} index (distance along the Hilbert Curve from 0) to a * point of dimensions defined in the constructor of {@code this}. * * @param index * index along the Hilbert Curve from 0. Maximum value 2 * bits+1-1. * @return array of longs being the point * @throws IllegalArgumentException * if index is negative */ public long[] point(long index) { return point(BigInteger.valueOf(index)); } /** * Returns the transposed representation of the Hilbert curve index. * *

* The Hilbert index is expressed internally as an array of transposed bits. * *

      Example: 5 bits for each of n=3 coordinates.
         15-bit Hilbert integer = A B C D E F G H I J K L M N O is stored
         as its Transpose                        ^
         X[0] = A D G J M                    X[2]|  7
         X[1] = B E H K N        <------->       | /X[1]
         X[2] = C F I L O                   axes |/
                high low                         0------> X[0]
     * 
* * @param index * index to be tranposed * @return transposed index */ @VisibleForTesting long[] transpose(BigInteger index) { long[] x = new long[dimensions]; transpose(index, x); return x; } private void transpose(BigInteger index, long[] x) { byte[] b = index.toByteArray(); for (int idx = 0; idx < 8 * b.length; idx++) { if ((b[b.length - 1 - idx / 8] & (1L << (idx % 8))) != 0) { int dim = (length - idx - 1) % dimensions; int shift = (idx / dimensions) % bits; x[dim] |= 1L << shift; } } } /** *

* Given the axes (coordinates) of a point in N-Dimensional space, find the * distance to that point along the Hilbert curve. That distance will be * transposed; broken into pieces and distributed into an array. * *

* The number of dimensions is the length of the hilbertAxes array. * *

* Note: In Skilling's paper, this function is called AxestoTranspose. * * @param mutate * * @param point * Point in N-space * @return The Hilbert distance (or index) as a transposed Hilbert index */ @VisibleForTesting static long[] transposedIndex(int bits, long... point) { final long M = 1L << (bits - 1); final int n = point.length; // n: Number of dimensions final long[] x = Arrays.copyOf(point, n); long p, q, t; int i; // Inverse undo for (q = M; q > 1; q >>= 1) { p = q - 1; for (i = 0; i < n; i++) if ((x[i] & q) != 0) x[0] ^= p; // invert else { t = (x[0] ^ x[i]) & p; x[0] ^= t; x[i] ^= t; } } // exchange // Gray encode for (i = 1; i < n; i++) x[i] ^= x[i - 1]; t = 0; for (q = M; q > 1; q >>= 1) if ((x[n - 1] & q) != 0) t ^= q - 1; for (i = 0; i < n; i++) x[i] ^= t; return x; } /** * Converts the Hilbert transposed index into an N-dimensional point expressed * as a vector of {@code long}. * * In Skilling's paper this function is named {@code TransposeToAxes} * * @param transposedIndex * distance along the Hilbert curve in transposed form * @return the coordinates of the point represented by the transposed index on * the Hilbert curve */ static long[] transposedIndexToPoint(int bits, long... x) { final long N = 2L << (bits - 1); // Note that x is mutated by this method (as a performance improvement // to avoid allocation) int n = x.length; // number of dimensions long p, q, t; int i; // Gray decode by H ^ (H/2) t = x[n - 1] >> 1; // Corrected error in Skilling's paper on the following line. The // appendix had i >= 0 leading to negative array index. for (i = n - 1; i > 0; i--) x[i] ^= x[i - 1]; x[0] ^= t; // Undo excess work for (q = 2; q != N; q <<= 1) { p = q - 1; for (i = n - 1; i >= 0; i--) if ((x[i] & q) != 0L) x[0] ^= p; // invert else { t = (x[0] ^ x[i]) & p; x[0] ^= t; x[i] ^= t; } } // exchange return x; } // Quote from Paul Chernoch // Interleaving means take one bit from the first matrix element, one bit // from the next, etc, then take the second bit from the first matrix // element, second bit from the second, all the way to the last bit of the // last element. Combine those bits in that order into a single BigInteger, // which can have as many bits as necessary. This converts the array into a // single number. @VisibleForTesting BigInteger toIndex(long... transposedIndex) { byte[] b = new byte[length]; int bIndex = length - 1; long mask = 1L << (bits - 1); for (int i = 0; i < bits; i++) { for (int j = 0; j < transposedIndex.length; j++) { if ((transposedIndex[j] & mask) != 0) { b[length - 1 - bIndex / 8] |= 1 << (bIndex % 8); } bIndex--; } mask >>= 1; } // b is expected to be BigEndian return new BigInteger(1, b); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy