kotlin.util.NumbersJVM.kt Maven / Gradle / Ivy
/*
* Copyright 2010-2018 JetBrains s.r.o. and Kotlin Programming Language contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:kotlin.jvm.JvmMultifileClass
@file:kotlin.jvm.JvmName("NumbersKt")
package kotlin
/**
* Returns `true` if the specified number is a
* Not-a-Number (NaN) value, `false` otherwise.
*/
@kotlin.internal.InlineOnly
public actual inline fun Double.isNaN(): Boolean = java.lang.Double.isNaN(this)
/**
* Returns `true` if the specified number is a
* Not-a-Number (NaN) value, `false` otherwise.
*/
@kotlin.internal.InlineOnly
public actual inline fun Float.isNaN(): Boolean = java.lang.Float.isNaN(this)
/**
* Returns `true` if this value is infinitely large in magnitude.
*/
@kotlin.internal.InlineOnly
public actual inline fun Double.isInfinite(): Boolean = java.lang.Double.isInfinite(this)
/**
* Returns `true` if this value is infinitely large in magnitude.
*/
@kotlin.internal.InlineOnly
public actual inline fun Float.isInfinite(): Boolean = java.lang.Float.isInfinite(this)
/**
* Returns `true` if the argument is a finite floating-point value; returns `false` otherwise (for `NaN` and infinity arguments).
*/
@kotlin.internal.InlineOnly
public actual inline fun Double.isFinite(): Boolean = !isInfinite() && !isNaN()
/**
* Returns `true` if the argument is a finite floating-point value; returns `false` otherwise (for `NaN` and infinity arguments).
*/
@kotlin.internal.InlineOnly
public actual inline fun Float.isFinite(): Boolean = !isInfinite() && !isNaN()
/**
* Returns a bit representation of the specified floating-point value as [Long]
* according to the IEEE 754 floating-point "double format" bit layout.
*/
@SinceKotlin("1.2")
@kotlin.internal.InlineOnly
public actual inline fun Double.toBits(): Long = java.lang.Double.doubleToLongBits(this)
/**
* Returns a bit representation of the specified floating-point value as [Long]
* according to the IEEE 754 floating-point "double format" bit layout,
* preserving `NaN` values exact layout.
*/
@SinceKotlin("1.2")
@kotlin.internal.InlineOnly
public actual inline fun Double.toRawBits(): Long = java.lang.Double.doubleToRawLongBits(this)
/**
* Returns the [Double] value corresponding to a given bit representation.
*/
@SinceKotlin("1.2")
@kotlin.internal.InlineOnly
public actual inline fun Double.Companion.fromBits(bits: Long): Double = java.lang.Double.longBitsToDouble(bits)
/**
* Returns a bit representation of the specified floating-point value as [Int]
* according to the IEEE 754 floating-point "single format" bit layout.
*/
@SinceKotlin("1.2")
@kotlin.internal.InlineOnly
public actual inline fun Float.toBits(): Int = java.lang.Float.floatToIntBits(this)
/**
* Returns a bit representation of the specified floating-point value as [Int]
* according to the IEEE 754 floating-point "single format" bit layout,
* preserving `NaN` values exact layout.
*/
@SinceKotlin("1.2")
@kotlin.internal.InlineOnly
public actual inline fun Float.toRawBits(): Int = java.lang.Float.floatToRawIntBits(this)
/**
* Returns the [Float] value corresponding to a given bit representation.
*/
@SinceKotlin("1.2")
@kotlin.internal.InlineOnly
public actual inline fun Float.Companion.fromBits(bits: Int): Float = java.lang.Float.intBitsToFloat(bits)
/**
* Counts the number of set bits in the binary representation of this [Int] number.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Int.countOneBits(): Int = Integer.bitCount(this)
/**
* Counts the number of consecutive most significant bits that are zero in the binary representation of this [Int] number.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Int.countLeadingZeroBits(): Int = Integer.numberOfLeadingZeros(this)
/**
* Counts the number of consecutive least significant bits that are zero in the binary representation of this [Int] number.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Int.countTrailingZeroBits(): Int = Integer.numberOfTrailingZeros(this)
/**
* Returns a number having a single bit set in the position of the most significant set bit of this [Int] number,
* or zero, if this number is zero.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Int.takeHighestOneBit(): Int = Integer.highestOneBit(this)
/**
* Returns a number having a single bit set in the position of the least significant set bit of this [Int] number,
* or zero, if this number is zero.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Int.takeLowestOneBit(): Int = Integer.lowestOneBit(this)
/**
* Rotates the binary representation of this [Int] number left by the specified [bitCount] number of bits.
* The most significant bits pushed out from the left side reenter the number as the least significant bits on the right side.
*
* Rotating the number left by a negative bit count is the same as rotating it right by the negated bit count:
* `number.rotateLeft(-n) == number.rotateRight(n)`
*
* Rotating by a multiple of [Int.SIZE_BITS] (32) returns the same number, or more generally
* `number.rotateLeft(n) == number.rotateLeft(n % 32)`
*/
@SinceKotlin("1.3")
@ExperimentalStdlibApi
@kotlin.internal.InlineOnly
public actual inline fun Int.rotateLeft(bitCount: Int): Int = Integer.rotateLeft(this, bitCount)
/**
* Rotates the binary representation of this [Int] number right by the specified [bitCount] number of bits.
* The least significant bits pushed out from the right side reenter the number as the most significant bits on the left side.
*
* Rotating the number right by a negative bit count is the same as rotating it left by the negated bit count:
* `number.rotateRight(-n) == number.rotateLeft(n)`
*
* Rotating by a multiple of [Int.SIZE_BITS] (32) returns the same number, or more generally
* `number.rotateRight(n) == number.rotateRight(n % 32)`
*/
@SinceKotlin("1.3")
@ExperimentalStdlibApi
@kotlin.internal.InlineOnly
public actual inline fun Int.rotateRight(bitCount: Int): Int = Integer.rotateRight(this, bitCount)
/**
* Counts the number of set bits in the binary representation of this [Long] number.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Long.countOneBits(): Int = java.lang.Long.bitCount(this)
/**
* Counts the number of consecutive most significant bits that are zero in the binary representation of this [Long] number.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Long.countLeadingZeroBits(): Int = java.lang.Long.numberOfLeadingZeros(this)
/**
* Counts the number of consecutive least significant bits that are zero in the binary representation of this [Long] number.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Long.countTrailingZeroBits(): Int = java.lang.Long.numberOfTrailingZeros(this)
/**
* Returns a number having a single bit set in the position of the most significant set bit of this [Long] number,
* or zero, if this number is zero.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Long.takeHighestOneBit(): Long = java.lang.Long.highestOneBit(this)
/**
* Returns a number having a single bit set in the position of the least significant set bit of this [Long] number,
* or zero, if this number is zero.
*/
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Long.takeLowestOneBit(): Long = java.lang.Long.lowestOneBit(this)
/**
* Rotates the binary representation of this [Long] number left by the specified [bitCount] number of bits.
* The most significant bits pushed out from the left side reenter the number as the least significant bits on the right side.
*
* Rotating the number left by a negative bit count is the same as rotating it right by the negated bit count:
* `number.rotateLeft(-n) == number.rotateRight(n)`
*
* Rotating by a multiple of [Long.SIZE_BITS] (64) returns the same number, or more generally
* `number.rotateLeft(n) == number.rotateLeft(n % 64)`
*/
@SinceKotlin("1.3")
@ExperimentalStdlibApi
@kotlin.internal.InlineOnly
public actual inline fun Long.rotateLeft(bitCount: Int): Long = java.lang.Long.rotateLeft(this, bitCount)
/**
* Rotates the binary representation of this [Long] number right by the specified [bitCount] number of bits.
* The least significant bits pushed out from the right side reenter the number as the most significant bits on the left side.
*
* Rotating the number right by a negative bit count is the same as rotating it left by the negated bit count:
* `number.rotateRight(-n) == number.rotateLeft(n)`
*
* Rotating by a multiple of [Long.SIZE_BITS] (64) returns the same number, or more generally
* `number.rotateRight(n) == number.rotateRight(n % 64)`
*/
@SinceKotlin("1.3")
@ExperimentalStdlibApi
@kotlin.internal.InlineOnly
public actual inline fun Long.rotateRight(bitCount: Int): Long = java.lang.Long.rotateRight(this, bitCount)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy