All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.airlift.compress.bzip2.CBZip2InputStream Maven / Gradle / Ivy

/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
 * This package is based on the work done by Keiron Liddle, Aftex Software
 *  to whom the Ant project is very grateful for his
 * great code.
 */
package io.airlift.compress.bzip2;

import java.io.BufferedInputStream;
import java.io.IOException;
import java.io.InputStream;

import static io.airlift.compress.bzip2.BZip2Constants.G_SIZE;
import static io.airlift.compress.bzip2.BZip2Constants.MAX_ALPHA_SIZE;
import static io.airlift.compress.bzip2.BZip2Constants.MAX_SELECTORS;
import static io.airlift.compress.bzip2.BZip2Constants.N_GROUPS;
import static io.airlift.compress.bzip2.BZip2Constants.RUN_A;
import static io.airlift.compress.bzip2.BZip2Constants.RUN_B;

/**
 * An input stream that decompresses from the BZip2 format (without the file
 * header chars) to be read as any other stream.
 *
 * 

* The decompression requires large amounts of memory. Thus you should call the * {@link #close() close()} method as soon as possible, to force * CBZip2InputStream to release the allocated memory. See * {@link CBZip2OutputStream CBZip2OutputStream} for information about memory * usage. *

* *

* CBZip2InputStream reads bytes from the compressed source stream via * the single byte {@link InputStream#read() read()} method exclusively. * Thus you should consider to use a buffered source stream. *

* *

* This Ant code was enhanced so that it can de-compress blocks of bzip2 data. * Current position in the stream is an important statistic for Hadoop. For * example in LineRecordReader, we solely depend on the current position in the * stream to know about the progress. The notion of position becomes complicated * for compressed files. The Hadoop splitting is done in terms of compressed * file. But a compressed file deflates to a large amount of data. So we have * handled this problem in the following way. *

* On object creation time, we find the next block start delimiter. Once such a * marker is found, the stream stops there (we discard any read compressed data * in this process) and the position is reported as the beginning of the block * start delimiter. At this point we are ready for actual reading * (i.e. decompression) of data. *

* The subsequent read calls give out data. The position is updated when the * caller of this class has read off the current block + 1 bytes. In between the * block reading, position is not updated. (We can only update the position on * block boundaries). *

* *

* Instances of this class are not thread safe. *

*/ @SuppressWarnings({ "AssignmentToForLoopParameter", "SpellCheckingInspection"}) class CBZip2InputStream extends InputStream { // start of block private static final long BLOCK_DELIMITER = 0X314159265359L; private static final int MAX_CODE_LEN = 23; /** * End of a BZip2 block */ public static final int END_OF_BLOCK = -2; /** * End of BZip2 stream. */ private static final int END_OF_STREAM = -1; private static final int DELIMITER_BIT_LENGTH = 48; // The variable records the current advertised position of the stream. private long reportedBytesReadFromCompressedStream; // The following variable keep record of compressed bytes read. private long bytesReadFromCompressedStream; private boolean initialized; private final byte[] array = new byte[1]; /** * Index of the last char in the block, so the block size == last + 1. */ private int last; /** * Index in zptr[] of original string after sorting. */ private int origPtr; /** * always: in the range 0 .. 9. The current block size is 100000 * this * number. */ private int blockSize100k; private boolean blockRandomised; private long bsBuff; private long bsLive; private final Crc32 crc32 = new Crc32(); private int nInUse; private BufferedInputStream in; private int currentChar = -1; /** * A state machine to keep track of current state of the de-coder */ public enum STATE { EOF, START_BLOCK_STATE, RAND_PART_A_STATE, RAND_PART_B_STATE, RAND_PART_C_STATE, NO_RAND_PART_A_STATE, NO_RAND_PART_B_STATE, NO_RAND_PART_C_STATE, NO_PROCESS_STATE } private STATE currentState = STATE.START_BLOCK_STATE; private int storedBlockCRC; private int storedCombinedCRC; private int computedCombinedCRC; // used by skipToNextMarker private boolean skipResult; // Variables used by setup* methods exclusively private int suCount; private int suCh2; private int suChPrev; private int suI2; private int suJ2; private int suRNToGo; private int suRTPos; private int suTPos; private char suZ; /** * All memory intensive stuff. This field is initialized by initBlock(). */ private Data data; /** * Constructs a new CBZip2InputStream which decompresses bytes read from the * specified stream. * *

* Although BZip2 headers are marked with the magic "Bz" this * constructor expects the next byte in the stream to be the first one after * the magic. Thus callers have to skip the first two bytes. Otherwise this * constructor will throw an exception. *

* * @throws IOException if the stream content is malformed or an I/O error occurs. * @throws NullPointerException if in == null */ public CBZip2InputStream(final InputStream in) { int blockSize = 0X39; // i.e 9 this.blockSize100k = blockSize - (int) '0'; this.in = new BufferedInputStream(in, 1024 * 9); // >1 MB buffer } /** * This method reports the processed bytes so far. Please note that this * statistic is only updated on block boundaries and only when the stream is * initiated in BYBLOCK mode. */ public long getProcessedByteCount() { return reportedBytesReadFromCompressedStream; } /** * This method keeps track of raw processed compressed * bytes. * * @param count count is the number of bytes to be * added to raw processed bytes */ private void updateProcessedByteCount(int count) { this.bytesReadFromCompressedStream += count; } /** * This method reads a Byte from the compressed stream. Whenever we need to * read from the underlying compressed stream, this method should be called * instead of directly calling the read method of the underlying compressed * stream. This method does important record keeping to have the statistic * that how many bytes have been read off the compressed stream. */ private int readAByte(InputStream inStream) throws IOException { int read = inStream.read(); if (read >= 0) { this.updateProcessedByteCount(1); } return read; } /** * This method tries to find the marker (passed to it as the first parameter) * in the stream. It can find bit patterns of length <= 63 bits. Specifically * this method is used in CBZip2InputStream to find the end of block (EOB) * delimiter in the stream, starting from the current position of the stream. * If marker is found, the stream position will be at the byte containing * the starting bit of the marker. * * @param marker The bit pattern to be found in the stream * @param markerBitLength No of bits in the marker * @return true if the marker was found otherwise false * @throws IllegalArgumentException if marketBitLength is greater than 63 */ private boolean skipToNextMarker(long marker, int markerBitLength) throws IllegalArgumentException { try { if (markerBitLength > 63) { throw new IllegalArgumentException( "skipToNextMarker can not find patterns greater than 63 bits"); } // pick next marketBitLength bits in the stream long bytes; bytes = this.bsR(markerBitLength); if (bytes == -1) { this.reportedBytesReadFromCompressedStream = this.bytesReadFromCompressedStream; return false; } while (true) { if (bytes == marker) { // Report the byte position where the marker starts long markerBytesRead = (markerBitLength + this.bsLive + 7) / 8; this.reportedBytesReadFromCompressedStream = this.bytesReadFromCompressedStream - markerBytesRead; return true; } else { bytes = bytes << 1; bytes = bytes & ((1L << markerBitLength) - 1); int oneBit = (int) this.bsR(1); if (oneBit != -1) { bytes = bytes | oneBit; } else { this.reportedBytesReadFromCompressedStream = this.bytesReadFromCompressedStream; return false; } } } } catch (IOException ex) { this.reportedBytesReadFromCompressedStream = this.bytesReadFromCompressedStream; return false; } } private void makeMaps() { final boolean[] inUse = this.data.inUse; final byte[] seqToUnseq = this.data.seqToUnseq; int nInUseShadow = 0; for (int i = 0; i < 256; i++) { if (inUse[i]) { seqToUnseq[nInUseShadow++] = (byte) i; } } this.nInUse = nInUseShadow; } private void changeStateToProcessABlock() throws IOException { if (skipResult) { initBlock(); setupBlock(); } else { this.currentState = STATE.EOF; } } @Override public int read() throws IOException { if (this.in != null) { int result = this.read(array, 0, 1); int value = 0XFF & array[0]; return (result > 0 ? value : result); } else { throw new IOException("stream closed"); } } /** * In CONTINOUS reading mode, this read method starts from the * start of the compressed stream and end at the end of file by * emitting un-compressed data. In this mode stream positioning * is not announced and should be ignored. *

* In BYBLOCK reading mode, this read method informs about the end * of a BZip2 block by returning EOB. At this event, the compressed * stream position is also announced. This announcement tells that * how much of the compressed stream has been de-compressed and read * out of this class. In between EOB events, the stream position is * not updated. * * @return int The return value greater than 0 are the bytes read. A value * of -1 means end of stream while -2 represents end of block * @throws IOException if the stream content is malformed or an I/O error occurs. */ @Override public int read(final byte[] dest, final int offs, final int len) throws IOException { if (offs < 0) { throw new IndexOutOfBoundsException("offs(" + offs + ") < 0."); } if (len < 0) { throw new IndexOutOfBoundsException("len(" + len + ") < 0."); } if (offs + len > dest.length) { throw new IndexOutOfBoundsException("offs(" + offs + ") + len(" + len + ") > dest.length(" + dest.length + ")."); } if (this.in == null) { throw new IOException("stream closed"); } if (!initialized) { this.init(); this.initialized = true; } final int hi = offs + len; int destOffs = offs; int b = 0; while (((destOffs < hi) && ((b = read0())) >= 0)) { dest[destOffs++] = (byte) b; } int result = destOffs - offs; if (result == 0) { //report 'end of block' or 'end of stream' result = b; skipResult = this.skipToNextMarker(BLOCK_DELIMITER, DELIMITER_BIT_LENGTH); changeStateToProcessABlock(); } return result; } private int read0() throws IOException { final int retChar = this.currentChar; switch (this.currentState) { case EOF: return END_OF_STREAM; // return -1 case NO_PROCESS_STATE: return END_OF_BLOCK; // return -2 case START_BLOCK_STATE: throw new IllegalStateException(); case RAND_PART_A_STATE: throw new IllegalStateException(); case RAND_PART_B_STATE: setupRandPartB(); break; case RAND_PART_C_STATE: setupRandPartC(); break; case NO_RAND_PART_A_STATE: throw new IllegalStateException(); case NO_RAND_PART_B_STATE: setupNoRandPartB(); break; case NO_RAND_PART_C_STATE: setupNoRandPartC(); break; default: throw new IllegalStateException(); } return retChar; } private void init() throws IOException { int magic2 = this.readAByte(in); if (magic2 != 'h') { throw new IOException("Stream is not BZip2 formatted: expected 'h'" + " as first byte but got '" + (char) magic2 + "'"); } int blockSize = this.readAByte(in); if ((blockSize < '1') || (blockSize > '9')) { throw new IOException("Stream is not BZip2 formatted: illegal " + "blocksize " + (char) blockSize); } this.blockSize100k = blockSize - (int) '0'; initBlock(); setupBlock(); } private void initBlock() throws IOException { char magic0 = bsGetUByte(); char magic1 = bsGetUByte(); char magic2 = bsGetUByte(); char magic3 = bsGetUByte(); char magic4 = bsGetUByte(); char magic5 = bsGetUByte(); if (magic0 == 0x17 && magic1 == 0x72 && magic2 == 0x45 && magic3 == 0x38 && magic4 == 0x50 && magic5 == 0x90) { complete(); // end of file } else if (magic0 != 0x31 || // '1' magic1 != 0x41 || // ')' magic2 != 0x59 || // 'Y' magic3 != 0x26 || // '&' magic4 != 0x53 || // 'S' magic5 != 0x59 /* 'Y' */) { this.currentState = STATE.EOF; throw new IOException("bad block header"); } else { this.storedBlockCRC = bsGetInt(); this.blockRandomised = bsR(1) == 1; // Allocate data here instead in constructor, so we do not allocate // it if the input file is empty. if (this.data == null) { this.data = new Data(this.blockSize100k); } // currBlockNo++; getAndMoveToFrontDecode(); this.crc32.initialiseCRC(); this.currentState = STATE.START_BLOCK_STATE; } } private void endBlock() throws IOException { int computedBlockCRC = this.crc32.getFinalCRC(); // A bad CRC is considered a fatal error. if (this.storedBlockCRC != computedBlockCRC) { // make next blocks readable without error // (repair feature, not yet documented, not tested) this.computedCombinedCRC = (this.storedCombinedCRC << 1) | (this.storedCombinedCRC >>> 31); this.computedCombinedCRC ^= this.storedBlockCRC; throw new IOException("crc error"); } this.computedCombinedCRC = (this.computedCombinedCRC << 1) | (this.computedCombinedCRC >>> 31); this.computedCombinedCRC ^= computedBlockCRC; } private void complete() throws IOException { this.storedCombinedCRC = bsGetInt(); this.currentState = STATE.EOF; this.data = null; if (this.storedCombinedCRC != this.computedCombinedCRC) { throw new IOException("crc error"); } } @Override public void close() throws IOException { InputStream inShadow = this.in; if (inShadow != null) { try { if (inShadow != System.in) { inShadow.close(); } } finally { this.data = null; this.in = null; } } } private long bsR(final long n) throws IOException { long bsLiveShadow = this.bsLive; long bsBuffShadow = this.bsBuff; if (bsLiveShadow < n) { final InputStream inShadow = this.in; do { int thech = readAByte(inShadow); if (thech < 0) { throw new IOException("unexpected end of stream"); } bsBuffShadow = (bsBuffShadow << 8) | thech; bsLiveShadow += 8; } while (bsLiveShadow < n); this.bsBuff = bsBuffShadow; } this.bsLive = bsLiveShadow - n; return (bsBuffShadow >> (bsLiveShadow - n)) & ((1L << n) - 1); } private boolean bsGetBit() throws IOException { long bsLiveShadow = this.bsLive; long bsBuffShadow = this.bsBuff; if (bsLiveShadow < 1) { int thech = this.readAByte(in); if (thech < 0) { throw new IOException("unexpected end of stream"); } bsBuffShadow = (bsBuffShadow << 8) | thech; bsLiveShadow += 8; this.bsBuff = bsBuffShadow; } this.bsLive = bsLiveShadow - 1; return ((bsBuffShadow >> (bsLiveShadow - 1)) & 1) != 0; } private char bsGetUByte() throws IOException { return (char) bsR(8); } private int bsGetInt() throws IOException { return (int) ((((((bsR(8) << 8) | bsR(8)) << 8) | bsR(8)) << 8) | bsR(8)); } /** * Called by createHuffmanDecodingTables() exclusively. */ private static void hbCreateDecodeTables(final int[] limit, final int[] base, final int[] perm, final char[] length, final int minLen, final int maxLen, final int alphaSize) { for (int i = minLen, pp = 0; i <= maxLen; i++) { for (int j = 0; j < alphaSize; j++) { if (length[j] == i) { perm[pp++] = j; } } } for (int i = MAX_CODE_LEN; --i > 0; ) { base[i] = 0; limit[i] = 0; } for (int i = 0; i < alphaSize; i++) { base[(int) length[i] + 1]++; } for (int i = 1, b = base[0]; i < MAX_CODE_LEN; i++) { b += base[i]; base[i] = b; } for (int i = minLen, vec = 0, b = base[i]; i <= maxLen; i++) { final int nb = base[i + 1]; vec += nb - b; b = nb; limit[i] = vec - 1; vec <<= 1; } for (int i = minLen + 1; i <= maxLen; i++) { base[i] = ((limit[i - 1] + 1) << 1) - base[i]; } } private void recvDecodingTables() throws IOException { final Data dataShadow = this.data; final boolean[] inUse = dataShadow.inUse; final byte[] pos = dataShadow.recvDecodingTablesPos; final byte[] selector = dataShadow.selector; final byte[] selectorMtf = dataShadow.selectorMtf; int inUse16 = 0; /* Receive the mapping table */ for (int i = 0; i < 16; i++) { if (bsGetBit()) { inUse16 |= 1 << i; } } for (int i = 256; --i >= 0; ) { inUse[i] = false; } for (int i = 0; i < 16; i++) { if ((inUse16 & (1 << i)) != 0) { final int i16 = i << 4; for (int j = 0; j < 16; j++) { if (bsGetBit()) { inUse[i16 + j] = true; } } } } makeMaps(); final int alphaSize = this.nInUse + 2; /* Now the selectors */ final int nGroups = (int) bsR(3); final int nSelectors = (int) bsR(15); for (int i = 0; i < nSelectors; i++) { int j = 0; while (bsGetBit()) { j++; } selectorMtf[i] = (byte) j; } /* Undo the MTF values for the selectors. */ for (int v = nGroups; --v >= 0; ) { pos[v] = (byte) v; } for (int i = 0; i < nSelectors; i++) { int v = selectorMtf[i] & 0xff; final byte tmp = pos[v]; while (v > 0) { // nearly all times v is zero, 4 in most other cases pos[v] = pos[v - 1]; v--; } pos[0] = tmp; selector[i] = tmp; } final char[][] len = dataShadow.tempCharArray2D; /* Now the coding tables */ for (int t = 0; t < nGroups; t++) { int curr = (int) bsR(5); final char[] lenT = len[t]; for (int i = 0; i < alphaSize; i++) { while (bsGetBit()) { curr += bsGetBit() ? -1 : 1; } lenT[i] = (char) curr; } } // finally create the Huffman tables createHuffmanDecodingTables(alphaSize, nGroups); } /** * Called by recvDecodingTables() exclusively. */ private void createHuffmanDecodingTables(final int alphaSize, final int nGroups) { final Data dataShadow = this.data; final char[][] len = dataShadow.tempCharArray2D; final int[] minLens = dataShadow.minLens; final int[][] limit = dataShadow.limit; final int[][] base = dataShadow.base; final int[][] perm = dataShadow.perm; for (int t = 0; t < nGroups; t++) { int minLen = 32; int maxLen = 0; final char[] lenT = len[t]; for (int i = alphaSize; --i >= 0; ) { final char lent = lenT[i]; if (lent > maxLen) { maxLen = lent; } if (lent < minLen) { minLen = lent; } } hbCreateDecodeTables(limit[t], base[t], perm[t], len[t], minLen, maxLen, alphaSize); minLens[t] = minLen; } } private void getAndMoveToFrontDecode() throws IOException { this.origPtr = (int) bsR(24); recvDecodingTables(); final InputStream inShadow = this.in; final Data dataShadow = this.data; final byte[] ll8 = dataShadow.ll8; final int[] unzftab = dataShadow.unzftab; final byte[] selector = dataShadow.selector; final byte[] seqToUnseq = dataShadow.seqToUnseq; final char[] yy = dataShadow.getAndMoveToFrontDecodeYy; final int[] minLens = dataShadow.minLens; final int[][] limit = dataShadow.limit; final int[][] base = dataShadow.base; final int[][] perm = dataShadow.perm; final int limitLast = this.blockSize100k * 100000; /* * Setting up the unzftab entries here is not strictly necessary, but it * does save having to do it later in a separate pass, and so saves a * block's worth of cache misses. */ for (int i = 256; --i >= 0; ) { yy[i] = (char) i; unzftab[i] = 0; } int groupNo = 0; int groupPos = G_SIZE - 1; final int eob = this.nInUse + 1; int nextSym = getAndMoveToFrontDecode0(0); int bsBuffShadow = (int) this.bsBuff; int bsLiveShadow = (int) this.bsLive; int lastShadow = -1; int zt = selector[groupNo] & 0xff; int[] baseZt = base[zt]; int[] limitZt = limit[zt]; int[] permZt = perm[zt]; int minLensZt = minLens[zt]; while (nextSym != eob) { if ((nextSym == RUN_A) || (nextSym == RUN_B)) { int s = -1; for (int n = 1; true; n <<= 1) { if (nextSym == RUN_A) { s += n; } else if (nextSym == RUN_B) { s += n << 1; } else { break; } if (groupPos == 0) { groupPos = G_SIZE - 1; zt = selector[++groupNo] & 0xff; baseZt = base[zt]; limitZt = limit[zt]; permZt = perm[zt]; minLensZt = minLens[zt]; } else { groupPos--; } int zn = minLensZt; while (bsLiveShadow < zn) { final int thech = readAByte(inShadow); if (thech >= 0) { bsBuffShadow = (bsBuffShadow << 8) | thech; bsLiveShadow += 8; } else { throw new IOException("unexpected end of stream"); } } long zvec = (bsBuffShadow >> (bsLiveShadow - zn)) & ((1L << zn) - 1); bsLiveShadow -= zn; while (zvec > limitZt[zn]) { zn++; while (bsLiveShadow < 1) { final int thech = readAByte(inShadow); if (thech >= 0) { bsBuffShadow = (bsBuffShadow << 8) | thech; bsLiveShadow += 8; } else { throw new IOException("unexpected end of stream"); } } bsLiveShadow--; zvec = (zvec << 1) | ((bsBuffShadow >> bsLiveShadow) & 1); } nextSym = permZt[(int) (zvec - baseZt[zn])]; } final byte ch = seqToUnseq[yy[0]]; unzftab[ch & 0xff] += s + 1; while (s-- >= 0) { ll8[++lastShadow] = ch; } if (lastShadow >= limitLast) { throw new IOException("block overrun"); } } else { if (++lastShadow >= limitLast) { throw new IOException("block overrun"); } final char tmp = yy[nextSym - 1]; unzftab[seqToUnseq[tmp] & 0xff]++; ll8[lastShadow] = seqToUnseq[tmp]; /* * This loop is hammered during decompression, hence avoid * native method call overhead of System.arraycopy for very * small ranges to copy. */ if (nextSym <= 16) { for (int j = nextSym - 1; j > 0; ) { yy[j] = yy[--j]; } } else { //noinspection SuspiciousSystemArraycopy System.arraycopy(yy, 0, yy, 1, nextSym - 1); } yy[0] = tmp; if (groupPos == 0) { groupPos = G_SIZE - 1; zt = selector[++groupNo] & 0xff; baseZt = base[zt]; limitZt = limit[zt]; permZt = perm[zt]; minLensZt = minLens[zt]; } else { groupPos--; } int zn = minLensZt; while (bsLiveShadow < zn) { final int thech = readAByte(inShadow); if (thech >= 0) { bsBuffShadow = (bsBuffShadow << 8) | thech; bsLiveShadow += 8; } else { throw new IOException("unexpected end of stream"); } } int zvec = (bsBuffShadow >> (bsLiveShadow - zn)) & ((1 << zn) - 1); bsLiveShadow -= zn; while (zvec > limitZt[zn]) { zn++; while (bsLiveShadow < 1) { final int thech = readAByte(inShadow); if (thech >= 0) { bsBuffShadow = (bsBuffShadow << 8) | thech; bsLiveShadow += 8; } else { throw new IOException("unexpected end of stream"); } } bsLiveShadow--; zvec = ((zvec << 1) | ((bsBuffShadow >> bsLiveShadow) & 1)); } nextSym = permZt[zvec - baseZt[zn]]; } } this.last = lastShadow; this.bsLive = bsLiveShadow; this.bsBuff = bsBuffShadow; } private int getAndMoveToFrontDecode0(final int groupNo) throws IOException { final InputStream inShadow = this.in; final Data dataShadow = this.data; final int zt = dataShadow.selector[groupNo] & 0xff; final int[] limitZt = dataShadow.limit[zt]; int zn = dataShadow.minLens[zt]; int zvec = (int) bsR(zn); int bsLiveShadow = (int) this.bsLive; int bsBuffShadow = (int) this.bsBuff; while (zvec > limitZt[zn]) { zn++; while (bsLiveShadow < 1) { final int thech = readAByte(inShadow); if (thech >= 0) { bsBuffShadow = (bsBuffShadow << 8) | thech; bsLiveShadow += 8; } else { throw new IOException("unexpected end of stream"); } } bsLiveShadow--; zvec = (zvec << 1) | ((bsBuffShadow >> bsLiveShadow) & 1); } this.bsLive = bsLiveShadow; this.bsBuff = bsBuffShadow; return dataShadow.perm[zt][zvec - dataShadow.base[zt][zn]]; } private void setupBlock() throws IOException { if (this.data == null) { return; } final int[] cftab = this.data.cftab; final int[] tt = this.data.initTT(this.last + 1); final byte[] ll8 = this.data.ll8; cftab[0] = 0; System.arraycopy(this.data.unzftab, 0, cftab, 1, 256); for (int i = 1, c = cftab[0]; i <= 256; i++) { c += cftab[i]; cftab[i] = c; } for (int i = 0, lastShadow = this.last; i <= lastShadow; i++) { tt[cftab[ll8[i] & 0xff]++] = i; } if ((this.origPtr < 0) || (this.origPtr >= tt.length)) { throw new IOException("stream corrupted"); } this.suTPos = tt[this.origPtr]; this.suCount = 0; this.suI2 = 0; this.suCh2 = 256; /* not a char and not EOF */ if (this.blockRandomised) { this.suRNToGo = 0; this.suRTPos = 0; setupRandPartA(); } else { setupNoRandPartA(); } } @SuppressWarnings("checkstyle:InnerAssignment") private void setupRandPartA() throws IOException { if (this.suI2 <= this.last) { this.suChPrev = this.suCh2; int suCh2Shadow = this.data.ll8[this.suTPos] & 0xff; this.suTPos = this.data.tt[this.suTPos]; if (this.suRNToGo == 0) { this.suRNToGo = R_NUMS[this.suRTPos] - 1; if (++this.suRTPos == 512) { this.suRTPos = 0; } } else { this.suRNToGo--; } this.suCh2 = suCh2Shadow ^= (this.suRNToGo == 1) ? 1 : 0; this.suI2++; this.currentChar = suCh2Shadow; this.currentState = STATE.RAND_PART_B_STATE; this.crc32.updateCRC(suCh2Shadow); } else { endBlock(); initBlock(); setupBlock(); } } private void setupNoRandPartA() throws IOException { if (this.suI2 <= this.last) { this.suChPrev = this.suCh2; int suCh2Shadow = this.data.ll8[this.suTPos] & 0xff; this.suCh2 = suCh2Shadow; this.suTPos = this.data.tt[this.suTPos]; this.suI2++; this.currentChar = suCh2Shadow; this.currentState = STATE.NO_RAND_PART_B_STATE; this.crc32.updateCRC(suCh2Shadow); } else { this.currentState = STATE.NO_RAND_PART_A_STATE; endBlock(); initBlock(); setupBlock(); } } private void setupRandPartB() throws IOException { if (this.suCh2 != this.suChPrev) { this.currentState = STATE.RAND_PART_A_STATE; this.suCount = 1; setupRandPartA(); } else if (++this.suCount >= 4) { this.suZ = (char) (this.data.ll8[this.suTPos] & 0xff); this.suTPos = this.data.tt[this.suTPos]; if (this.suRNToGo == 0) { this.suRNToGo = R_NUMS[this.suRTPos] - 1; if (++this.suRTPos == 512) { this.suRTPos = 0; } } else { this.suRNToGo--; } this.suJ2 = 0; this.currentState = STATE.RAND_PART_C_STATE; if (this.suRNToGo == 1) { this.suZ ^= 1; } setupRandPartC(); } else { this.currentState = STATE.RAND_PART_A_STATE; setupRandPartA(); } } private void setupRandPartC() throws IOException { if (this.suJ2 < this.suZ) { this.currentChar = this.suCh2; this.crc32.updateCRC(this.suCh2); this.suJ2++; } else { this.currentState = STATE.RAND_PART_A_STATE; this.suI2++; this.suCount = 0; setupRandPartA(); } } private void setupNoRandPartB() throws IOException { if (this.suCh2 != this.suChPrev) { this.suCount = 1; setupNoRandPartA(); } else if (++this.suCount >= 4) { this.suZ = (char) (this.data.ll8[this.suTPos] & 0xff); this.suTPos = this.data.tt[this.suTPos]; this.suJ2 = 0; setupNoRandPartC(); } else { setupNoRandPartA(); } } private void setupNoRandPartC() throws IOException { if (this.suJ2 < this.suZ) { int suCh2Shadow = this.suCh2; this.currentChar = suCh2Shadow; this.crc32.updateCRC(suCh2Shadow); this.suJ2++; this.currentState = STATE.NO_RAND_PART_C_STATE; } else { this.suI2++; this.suCount = 0; setupNoRandPartA(); } } private static final class Data { // (with blockSize 900k) final boolean[] inUse = new boolean[256]; // 256 byte final byte[] seqToUnseq = new byte[256]; // 256 byte final byte[] selector = new byte[MAX_SELECTORS]; // 18002 byte final byte[] selectorMtf = new byte[MAX_SELECTORS]; // 18002 byte /** * Freq table collected to save a pass over the data during * decompression. */ final int[] unzftab = new int[256]; // 1024 byte final int[][] limit = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 byte final int[][] base = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 byte final int[][] perm = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 byte final int[] minLens = new int[N_GROUPS]; // 24 byte final int[] cftab = new int[257]; // 1028 byte final char[] getAndMoveToFrontDecodeYy = new char[256]; // 512 byte final char[][] tempCharArray2D = new char[N_GROUPS][MAX_ALPHA_SIZE]; // 3096 // byte final byte[] recvDecodingTablesPos = new byte[N_GROUPS]; // 6 byte // --------------- // 60798 byte int[] tt; // 3600000 byte byte[] ll8; // 900000 byte // --------------- // 4560782 byte // =============== Data(int blockSize100k) { this.ll8 = new byte[blockSize100k * BZip2Constants.BASE_BLOCK_SIZE]; } /** * Initializes the {@link #tt} array. *

* This method is called when the required length of the array is known. * I don't initialize it at construction time to avoid unnecessary * memory allocation when compressing small files. */ int[] initTT(int length) { int[] ttShadow = this.tt; // tt.length should always be >= length, but theoretically // it can happen, if the compressor mixed small and large // blocks. Normally only the last block will be smaller // than others. if ((ttShadow == null) || (ttShadow.length < length)) { ttShadow = new int[length]; this.tt = ttShadow; } return ttShadow; } } private static final int[] R_NUMS = { 619, 720, 127, 481, 931, 816, 813, 233, 566, 247, 985, 724, 205, 454, 863, 491, 741, 242, 949, 214, 733, 859, 335, 708, 621, 574, 73, 654, 730, 472, 419, 436, 278, 496, 867, 210, 399, 680, 480, 51, 878, 465, 811, 169, 869, 675, 611, 697, 867, 561, 862, 687, 507, 283, 482, 129, 807, 591, 733, 623, 150, 238, 59, 379, 684, 877, 625, 169, 643, 105, 170, 607, 520, 932, 727, 476, 693, 425, 174, 647, 73, 122, 335, 530, 442, 853, 695, 249, 445, 515, 909, 545, 703, 919, 874, 474, 882, 500, 594, 612, 641, 801, 220, 162, 819, 984, 589, 513, 495, 799, 161, 604, 958, 533, 221, 400, 386, 867, 600, 782, 382, 596, 414, 171, 516, 375, 682, 485, 911, 276, 98, 553, 163, 354, 666, 933, 424, 341, 533, 870, 227, 730, 475, 186, 263, 647, 537, 686, 600, 224, 469, 68, 770, 919, 190, 373, 294, 822, 808, 206, 184, 943, 795, 384, 383, 461, 404, 758, 839, 887, 715, 67, 618, 276, 204, 918, 873, 777, 604, 560, 951, 160, 578, 722, 79, 804, 96, 409, 713, 940, 652, 934, 970, 447, 318, 353, 859, 672, 112, 785, 645, 863, 803, 350, 139, 93, 354, 99, 820, 908, 609, 772, 154, 274, 580, 184, 79, 626, 630, 742, 653, 282, 762, 623, 680, 81, 927, 626, 789, 125, 411, 521, 938, 300, 821, 78, 343, 175, 128, 250, 170, 774, 972, 275, 999, 639, 495, 78, 352, 126, 857, 956, 358, 619, 580, 124, 737, 594, 701, 612, 669, 112, 134, 694, 363, 992, 809, 743, 168, 974, 944, 375, 748, 52, 600, 747, 642, 182, 862, 81, 344, 805, 988, 739, 511, 655, 814, 334, 249, 515, 897, 955, 664, 981, 649, 113, 974, 459, 893, 228, 433, 837, 553, 268, 926, 240, 102, 654, 459, 51, 686, 754, 806, 760, 493, 403, 415, 394, 687, 700, 946, 670, 656, 610, 738, 392, 760, 799, 887, 653, 978, 321, 576, 617, 626, 502, 894, 679, 243, 440, 680, 879, 194, 572, 640, 724, 926, 56, 204, 700, 707, 151, 457, 449, 797, 195, 791, 558, 945, 679, 297, 59, 87, 824, 713, 663, 412, 693, 342, 606, 134, 108, 571, 364, 631, 212, 174, 643, 304, 329, 343, 97, 430, 751, 497, 314, 983, 374, 822, 928, 140, 206, 73, 263, 980, 736, 876, 478, 430, 305, 170, 514, 364, 692, 829, 82, 855, 953, 676, 246, 369, 970, 294, 750, 807, 827, 150, 790, 288, 923, 804, 378, 215, 828, 592, 281, 565, 555, 710, 82, 896, 831, 547, 261, 524, 462, 293, 465, 502, 56, 661, 821, 976, 991, 658, 869, 905, 758, 745, 193, 768, 550, 608, 933, 378, 286, 215, 979, 792, 961, 61, 688, 793, 644, 986, 403, 106, 366, 905, 644, 372, 567, 466, 434, 645, 210, 389, 550, 919, 135, 780, 773, 635, 389, 707, 100, 626, 958, 165, 504, 920, 176, 193, 713, 857, 265, 203, 50, 668, 108, 645, 990, 626, 197, 510, 357, 358, 850, 858, 364, 936, 638}; }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy