All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.sink.clustering.ClusteringCommitSink Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi.sink.clustering;

import org.apache.hudi.avro.model.HoodieClusteringGroup;
import org.apache.hudi.avro.model.HoodieClusteringPlan;
import org.apache.hudi.client.WriteStatus;
import org.apache.hudi.common.model.HoodieCommitMetadata;
import org.apache.hudi.common.model.HoodieFileGroupId;
import org.apache.hudi.common.model.TableServiceType;
import org.apache.hudi.common.model.WriteOperationType;
import org.apache.hudi.common.table.HoodieTableMetaClient;
import org.apache.hudi.common.table.timeline.HoodieTimeline;
import org.apache.hudi.common.util.ClusteringUtils;
import org.apache.hudi.common.util.CommitUtils;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.common.util.collection.Pair;
import org.apache.hudi.configuration.FlinkOptions;
import org.apache.hudi.exception.HoodieClusteringException;
import org.apache.hudi.exception.HoodieException;
import org.apache.hudi.metrics.FlinkClusteringMetrics;
import org.apache.hudi.sink.CleanFunction;
import org.apache.hudi.table.HoodieFlinkTable;
import org.apache.hudi.table.action.HoodieWriteMetadata;
import org.apache.hudi.util.ClusteringUtil;
import org.apache.hudi.util.FlinkWriteClients;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.metrics.MetricGroup;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.stream.Collectors;

/**
 * Function to check and commit the clustering action.
 *
 * 

Each time after receiving a clustering commit event {@link ClusteringCommitEvent}, * it loads and checks the clustering plan {@link org.apache.hudi.avro.model.HoodieClusteringPlan}, * if all the clustering operations {@link org.apache.hudi.common.model.ClusteringOperation} * of the plan are finished, tries to commit the clustering action. * *

It also inherits the {@link CleanFunction} cleaning ability. This is needed because * the SQL API does not allow multiple sinks in one table sink provider. */ public class ClusteringCommitSink extends CleanFunction { private static final Logger LOG = LoggerFactory.getLogger(ClusteringCommitSink.class); /** * Config options. */ private final Configuration conf; private transient HoodieFlinkTable table; /** * Buffer to collect the event from each clustering task {@code ClusteringFunction}. * *

Stores the mapping of instant_time -> file_ids -> event. Use a map to collect the * events because the rolling back of intermediate clustering tasks generates corrupt * events. */ private transient Map> commitBuffer; /** * Cache to store clustering plan for each instant. * Stores the mapping of instant_time -> clusteringPlan. */ private transient Map clusteringPlanCache; private transient FlinkClusteringMetrics clusteringMetrics; public ClusteringCommitSink(Configuration conf) { super(conf); this.conf = conf; } @Override public void open(Configuration parameters) throws Exception { super.open(parameters); if (writeClient == null) { this.writeClient = FlinkWriteClients.createWriteClient(conf, getRuntimeContext()); } this.commitBuffer = new HashMap<>(); this.clusteringPlanCache = new HashMap<>(); this.table = writeClient.getHoodieTable(); registerMetrics(); } @Override public void invoke(ClusteringCommitEvent event, Context context) throws Exception { final String instant = event.getInstant(); if (event.isFailed() || (event.getWriteStatuses() != null && event.getWriteStatuses().stream().anyMatch(writeStatus -> writeStatus.getTotalErrorRecords() > 0))) { LOG.warn("Receive abnormal ClusteringCommitEvent of instant {}, task ID is {}," + " is failed: {}, error record count: {}", instant, event.getTaskID(), event.isFailed(), getNumErrorRecords(event)); } commitBuffer.computeIfAbsent(instant, k -> new HashMap<>()) .put(event.getFileIds(), event); commitIfNecessary(instant, commitBuffer.get(instant).values()); } private long getNumErrorRecords(ClusteringCommitEvent event) { if (event.getWriteStatuses() == null) { return -1L; } return event.getWriteStatuses().stream() .map(WriteStatus::getTotalErrorRecords).reduce(Long::sum).orElse(0L); } /** * Condition to commit: the commit buffer has equal size with the clustering plan operations * and all the clustering commit event {@link ClusteringCommitEvent} has the same clustering instant time. * * @param instant Clustering commit instant time * @param events Commit events ever received for the instant */ private void commitIfNecessary(String instant, Collection events) { HoodieClusteringPlan clusteringPlan = clusteringPlanCache.computeIfAbsent(instant, k -> { try { HoodieTableMetaClient metaClient = this.writeClient.getHoodieTable().getMetaClient(); return ClusteringUtils.getInflightClusteringInstant(instant, metaClient.getActiveTimeline(), table.getInstantGenerator()) .flatMap(pendingInstant -> ClusteringUtils.getClusteringPlan( metaClient, pendingInstant)) .map(Pair::getRight) .orElse(null); } catch (Exception e) { throw new HoodieException(e); } }); if (clusteringPlan == null) { return; } boolean isReady = clusteringPlan.getInputGroups().size() == events.size(); if (!isReady) { return; } if (events.stream().anyMatch(ClusteringCommitEvent::isFailed)) { try { // handle failure case ClusteringUtil.rollbackClustering(table, writeClient, instant); } finally { // remove commitBuffer to avoid obsolete metadata commit reset(instant); } return; } try { doCommit(instant, clusteringPlan, events); } catch (Throwable throwable) { // make it fail-safe LOG.error("Error while committing clustering instant: " + instant, throwable); } finally { // reset the status reset(instant); } } private void doCommit(String instant, HoodieClusteringPlan clusteringPlan, Collection events) { List statuses = events.stream() .map(ClusteringCommitEvent::getWriteStatuses) .flatMap(Collection::stream) .collect(Collectors.toList()); long numErrorRecords = statuses.stream().map(WriteStatus::getTotalErrorRecords).reduce(Long::sum).orElse(0L); if (numErrorRecords > 0 && !this.conf.getBoolean(FlinkOptions.IGNORE_FAILED)) { // handle failure case LOG.error("Got {} error records during clustering of instant {},\n" + "option '{}' is configured as false," + "rolls back the clustering", numErrorRecords, instant, FlinkOptions.IGNORE_FAILED.key()); ClusteringUtil.rollbackClustering(table, writeClient, instant); return; } HoodieWriteMetadata> writeMetadata = new HoodieWriteMetadata<>(); writeMetadata.setWriteStatuses(statuses); writeMetadata.setWriteStats(statuses.stream().map(WriteStatus::getStat).collect(Collectors.toList())); writeMetadata.setPartitionToReplaceFileIds(getPartitionToReplacedFileIds(clusteringPlan, writeMetadata)); validateWriteResult(clusteringPlan, instant, writeMetadata); if (!writeMetadata.getCommitMetadata().isPresent()) { HoodieCommitMetadata commitMetadata = CommitUtils.buildMetadata( writeMetadata.getWriteStats().get(), writeMetadata.getPartitionToReplaceFileIds(), Option.empty(), WriteOperationType.CLUSTER, this.writeClient.getConfig().getSchema(), HoodieTimeline.REPLACE_COMMIT_ACTION); writeMetadata.setCommitMetadata(Option.of(commitMetadata)); } // commit the clustering this.table.getMetaClient().reloadActiveTimeline(); this.writeClient.completeTableService(TableServiceType.CLUSTER, writeMetadata.getCommitMetadata().get(), table, instant); clusteringMetrics.updateCommitMetrics(instant, writeMetadata.getCommitMetadata().get()); // whether to clean up the input base parquet files used for clustering if (!conf.getBoolean(FlinkOptions.CLEAN_ASYNC_ENABLED) && !isCleaning) { LOG.info("Running inline clean"); this.writeClient.clean(); } } private void reset(String instant) { this.commitBuffer.remove(instant); this.clusteringPlanCache.remove(instant); } /** * Validate actions taken by clustering. In the first implementation, we validate at least one new file is written. * But we can extend this to add more validation. E.g. number of records read = number of records written etc. * We can also make these validations in BaseCommitActionExecutor to reuse pre-commit hooks for multiple actions. */ private static void validateWriteResult(HoodieClusteringPlan clusteringPlan, String instantTime, HoodieWriteMetadata> writeMetadata) { if (writeMetadata.getWriteStatuses().isEmpty()) { throw new HoodieClusteringException("Clustering plan produced 0 WriteStatus for " + instantTime + " #groups: " + clusteringPlan.getInputGroups().size() + " expected at least " + clusteringPlan.getInputGroups().stream().mapToInt(HoodieClusteringGroup::getNumOutputFileGroups).sum() + " write statuses"); } } private static Map> getPartitionToReplacedFileIds( HoodieClusteringPlan clusteringPlan, HoodieWriteMetadata> writeMetadata) { Set newFilesWritten = writeMetadata.getWriteStats().get().stream() .map(s -> new HoodieFileGroupId(s.getPartitionPath(), s.getFileId())).collect(Collectors.toSet()); return ClusteringUtils.getFileGroupsFromClusteringPlan(clusteringPlan) .filter(fg -> !newFilesWritten.contains(fg)) .collect(Collectors.groupingBy(HoodieFileGroupId::getPartitionPath, Collectors.mapping(HoodieFileGroupId::getFileId, Collectors.toList()))); } private void registerMetrics() { MetricGroup metrics = getRuntimeContext().getMetricGroup(); clusteringMetrics = new FlinkClusteringMetrics(metrics); clusteringMetrics.registerMetrics(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy