All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.HoodieSparkSqlWriter.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi

import java.util

import org.apache.avro.generic.GenericRecord
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.hadoop.hive.conf.HiveConf
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.common.table.HoodieTableMetaClient
import org.apache.hudi.common.util.{FSUtils, TypedProperties}
import org.apache.hudi.config.HoodieWriteConfig
import org.apache.hudi.exception.HoodieException
import org.apache.hudi.hive.{HiveSyncConfig, HiveSyncTool}
import org.apache.log4j.LogManager
import org.apache.spark.api.java.JavaSparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SQLContext, SaveMode}

import scala.collection.JavaConversions._
import scala.collection.mutable.ListBuffer

private[hudi] object HoodieSparkSqlWriter {

  private val log = LogManager.getLogger(getClass)

  def write(sqlContext: SQLContext,
            mode: SaveMode,
            parameters: Map[String, String],
            df: DataFrame): (Boolean, common.util.Option[String]) = {

    val sparkContext = sqlContext.sparkContext
    val path = parameters.get("path")
    val tblName = parameters.get(HoodieWriteConfig.TABLE_NAME)
    if (path.isEmpty || tblName.isEmpty) {
      throw new HoodieException(s"'${HoodieWriteConfig.TABLE_NAME}', 'path' must be set.")
    }
    sparkContext.getConf.getOption("spark.serializer") match {
      case Some(ser) if ser.equals("org.apache.spark.serializer.KryoSerializer") =>
      case _ => throw new HoodieException("hoodie only support org.apache.spark.serializer.KryoSerializer as spark.serializer")
    }
    val storageType = parameters(STORAGE_TYPE_OPT_KEY)
    val operation =
    // It does not make sense to allow upsert() operation if INSERT_DROP_DUPS_OPT_KEY is true
    // Auto-correct the operation to "insert" if OPERATION_OPT_KEY is set to "upsert" wrongly
    // or not set (in which case it will be set as "upsert" by parametersWithWriteDefaults()) .
      if (parameters(INSERT_DROP_DUPS_OPT_KEY).toBoolean &&
        parameters(OPERATION_OPT_KEY) == UPSERT_OPERATION_OPT_VAL) {

        log.warn(s"$UPSERT_OPERATION_OPT_VAL is not applicable " +
          s"when $INSERT_DROP_DUPS_OPT_KEY is set to be true, " +
          s"overriding the $OPERATION_OPT_KEY to be $INSERT_OPERATION_OPT_VAL")

        INSERT_OPERATION_OPT_VAL
      } else {
        parameters(OPERATION_OPT_KEY)
      }

    // register classes & schemas
    val structName = s"${tblName.get}_record"
    val nameSpace = s"hoodie.${tblName.get}"
    sparkContext.getConf.registerKryoClasses(
      Array(classOf[org.apache.avro.generic.GenericData],
        classOf[org.apache.avro.Schema]))
    val schema = AvroConversionUtils.convertStructTypeToAvroSchema(df.schema, structName, nameSpace)
    sparkContext.getConf.registerAvroSchemas(schema)
    log.info(s"Registered avro schema : ${schema.toString(true)}")

    // Convert to RDD[HoodieRecord]
    val keyGenerator = DataSourceUtils.createKeyGenerator(toProperties(parameters))
    val genericRecords: RDD[GenericRecord] = AvroConversionUtils.createRdd(df, structName, nameSpace)
    val hoodieAllIncomingRecords = genericRecords.map(gr => {
      val orderingVal = DataSourceUtils.getNestedFieldValAsString(
        gr, parameters(PRECOMBINE_FIELD_OPT_KEY)).asInstanceOf[Comparable[_]]
      DataSourceUtils.createHoodieRecord(gr,
        orderingVal, keyGenerator.getKey(gr), parameters(PAYLOAD_CLASS_OPT_KEY))
    }).toJavaRDD()

    val jsc = new JavaSparkContext(sparkContext)

    val basePath = new Path(parameters("path"))
    val fs = basePath.getFileSystem(sparkContext.hadoopConfiguration)
    var exists = fs.exists(new Path(basePath, HoodieTableMetaClient.METAFOLDER_NAME))

    // Handle various save modes
    if (mode == SaveMode.ErrorIfExists && exists) {
      throw new HoodieException(s"hoodie dataset at $basePath already exists.")
    }
    if (mode == SaveMode.Ignore && exists) {
      log.warn(s"hoodie dataset at $basePath already exists. Ignoring & not performing actual writes.")
      return (true, common.util.Option.empty())
    }
    if (mode == SaveMode.Overwrite && exists) {
      log.warn(s"hoodie dataset at $basePath already exists. Deleting existing data & overwriting with new data.")
      fs.delete(basePath, true)
      exists = false
    }

    // Create the dataset if not present
    if (!exists) {
      HoodieTableMetaClient.initTableType(sparkContext.hadoopConfiguration, path.get, storageType,
        tblName.get, "archived")
    }

    // Create a HoodieWriteClient & issue the write.
    val client = DataSourceUtils.createHoodieClient(jsc, schema.toString, path.get, tblName.get,
      mapAsJavaMap(parameters)
    )

    val hoodieRecords =
      if (parameters(INSERT_DROP_DUPS_OPT_KEY).toBoolean) {
        DataSourceUtils.dropDuplicates(
          jsc,
          hoodieAllIncomingRecords,
          mapAsJavaMap(parameters), client.getTimelineServer)
      } else {
        hoodieAllIncomingRecords
      }

    if (hoodieRecords.isEmpty()) {
      log.info("new batch has no new records, skipping...")
      return (true, common.util.Option.empty())
    }

    val commitTime = client.startCommit()

    val writeStatuses = DataSourceUtils.doWriteOperation(client, hoodieRecords, commitTime, operation)
    // Check for errors and commit the write.
    val errorCount = writeStatuses.rdd.filter(ws => ws.hasErrors).count()
    val writeSuccessful =
    if (errorCount == 0) {
      log.info("No errors. Proceeding to commit the write.")
      val metaMap = parameters.filter(kv =>
        kv._1.startsWith(parameters(COMMIT_METADATA_KEYPREFIX_OPT_KEY)))
      val commitSuccess = if (metaMap.isEmpty) {
        client.commit(commitTime, writeStatuses)
      } else {
        client.commit(commitTime, writeStatuses,
          common.util.Option.of(new util.HashMap[String, String](mapAsJavaMap(metaMap))))
      }

      if (commitSuccess) {
        log.info("Commit " + commitTime + " successful!")
      }
      else {
        log.info("Commit " + commitTime + " failed!")
      }

      val hiveSyncEnabled = parameters.get(HIVE_SYNC_ENABLED_OPT_KEY).exists(r => r.toBoolean)
      val syncHiveSucess = if (hiveSyncEnabled) {
        log.info("Syncing to Hive Metastore (URL: " + parameters(HIVE_URL_OPT_KEY) + ")")
        val fs = FSUtils.getFs(basePath.toString, jsc.hadoopConfiguration)
        syncHive(basePath, fs, parameters)
      } else {
        true
      }
      client.close()
      commitSuccess && syncHiveSucess
    } else {
      log.error(s"$operation failed with ${errorCount} errors :");
      if (log.isTraceEnabled) {
        log.trace("Printing out the top 100 errors")
        writeStatuses.rdd.filter(ws => ws.hasErrors)
          .take(100)
          .foreach(ws => {
            log.trace("Global error :", ws.getGlobalError)
            if (ws.getErrors.size() > 0) {
              ws.getErrors.foreach(kt =>
                log.trace(s"Error for key: ${kt._1}", kt._2))
            }
          })
      }
      false
    }
    (writeSuccessful, common.util.Option.ofNullable(commitTime))
  }

  /**
   * Add default options for unspecified write options keys.
   *
   * @param parameters
   * @return
   */
  def parametersWithWriteDefaults(parameters: Map[String, String]): Map[String, String] = {
    Map(OPERATION_OPT_KEY -> DEFAULT_OPERATION_OPT_VAL,
      STORAGE_TYPE_OPT_KEY -> DEFAULT_STORAGE_TYPE_OPT_VAL,
      PRECOMBINE_FIELD_OPT_KEY -> DEFAULT_PRECOMBINE_FIELD_OPT_VAL,
      PAYLOAD_CLASS_OPT_KEY -> DEFAULT_PAYLOAD_OPT_VAL,
      RECORDKEY_FIELD_OPT_KEY -> DEFAULT_RECORDKEY_FIELD_OPT_VAL,
      PARTITIONPATH_FIELD_OPT_KEY -> DEFAULT_PARTITIONPATH_FIELD_OPT_VAL,
      KEYGENERATOR_CLASS_OPT_KEY -> DEFAULT_KEYGENERATOR_CLASS_OPT_VAL,
      COMMIT_METADATA_KEYPREFIX_OPT_KEY -> DEFAULT_COMMIT_METADATA_KEYPREFIX_OPT_VAL,
      INSERT_DROP_DUPS_OPT_KEY -> DEFAULT_INSERT_DROP_DUPS_OPT_VAL,
      STREAMING_RETRY_CNT_OPT_KEY -> DEFAULT_STREAMING_RETRY_CNT_OPT_VAL,
      STREAMING_RETRY_INTERVAL_MS_OPT_KEY -> DEFAULT_STREAMING_RETRY_INTERVAL_MS_OPT_VAL,
      STREAMING_IGNORE_FAILED_BATCH_OPT_KEY -> DEFAULT_STREAMING_IGNORE_FAILED_BATCH_OPT_VAL,
      HIVE_SYNC_ENABLED_OPT_KEY -> DEFAULT_HIVE_SYNC_ENABLED_OPT_VAL,
      HIVE_DATABASE_OPT_KEY -> DEFAULT_HIVE_DATABASE_OPT_VAL,
      HIVE_TABLE_OPT_KEY -> DEFAULT_HIVE_TABLE_OPT_VAL,
      HIVE_USER_OPT_KEY -> DEFAULT_HIVE_USER_OPT_VAL,
      HIVE_PASS_OPT_KEY -> DEFAULT_HIVE_PASS_OPT_VAL,
      HIVE_URL_OPT_KEY -> DEFAULT_HIVE_URL_OPT_VAL,
      HIVE_PARTITION_FIELDS_OPT_KEY -> DEFAULT_HIVE_PARTITION_FIELDS_OPT_VAL,
      HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY -> DEFAULT_HIVE_PARTITION_EXTRACTOR_CLASS_OPT_VAL,
      HIVE_ASSUME_DATE_PARTITION_OPT_KEY -> DEFAULT_HIVE_ASSUME_DATE_PARTITION_OPT_VAL
    ) ++: parameters
  }

  def toProperties(params: Map[String, String]): TypedProperties = {
    val props = new TypedProperties()
    params.foreach(kv => props.setProperty(kv._1, kv._2))
    props
  }

  private def syncHive(basePath: Path, fs: FileSystem, parameters: Map[String, String]): Boolean = {
    val hiveSyncConfig: HiveSyncConfig = buildSyncConfig(basePath, parameters)
    val hiveConf: HiveConf = new HiveConf()
    hiveConf.addResource(fs.getConf)
    new HiveSyncTool(hiveSyncConfig, hiveConf, fs).syncHoodieTable()
    true
  }

  private def buildSyncConfig(basePath: Path, parameters: Map[String, String]): HiveSyncConfig = {
    val hiveSyncConfig: HiveSyncConfig = new HiveSyncConfig()
    hiveSyncConfig.basePath = basePath.toString
    hiveSyncConfig.usePreApacheInputFormat =
      parameters.get(HIVE_USE_PRE_APACHE_INPUT_FORMAT_OPT_KEY).exists(r => r.toBoolean)
    hiveSyncConfig.assumeDatePartitioning =
      parameters.get(HIVE_ASSUME_DATE_PARTITION_OPT_KEY).exists(r => r.toBoolean)
    hiveSyncConfig.databaseName = parameters(HIVE_DATABASE_OPT_KEY)
    hiveSyncConfig.tableName = parameters(HIVE_TABLE_OPT_KEY)
    hiveSyncConfig.hiveUser = parameters(HIVE_USER_OPT_KEY)
    hiveSyncConfig.hivePass = parameters(HIVE_PASS_OPT_KEY)
    hiveSyncConfig.jdbcUrl = parameters(HIVE_URL_OPT_KEY)
    hiveSyncConfig.partitionFields =
      ListBuffer(parameters(HIVE_PARTITION_FIELDS_OPT_KEY).split(",").map(_.trim).filter(!_.isEmpty).toList: _*)
    hiveSyncConfig.partitionValueExtractorClass = parameters(HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY)
    hiveSyncConfig
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy