All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.DataSourceUtils Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi;

import org.apache.hudi.client.HoodieWriteResult;
import org.apache.hudi.client.SparkRDDReadClient;
import org.apache.hudi.client.SparkRDDWriteClient;
import org.apache.hudi.client.common.HoodieSparkEngineContext;
import org.apache.hudi.common.config.HoodieStorageConfig;
import org.apache.hudi.common.model.EmptyHoodieRecordPayload;
import org.apache.hudi.common.model.HoodieAvroRecord;
import org.apache.hudi.common.model.HoodieKey;
import org.apache.hudi.common.model.HoodieRecord;
import org.apache.hudi.common.model.HoodieRecordLocation;
import org.apache.hudi.common.model.HoodieRecordPayload;
import org.apache.hudi.common.model.HoodieSparkRecord;
import org.apache.hudi.common.model.WriteOperationType;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.common.util.ReflectionUtils;
import org.apache.hudi.common.util.StringUtils;
import org.apache.hudi.common.util.TablePathUtils;
import org.apache.hudi.config.HoodieCompactionConfig;
import org.apache.hudi.config.HoodiePayloadConfig;
import org.apache.hudi.config.HoodieWriteConfig;
import org.apache.hudi.exception.HoodieException;
import org.apache.hudi.exception.TableNotFoundException;
import org.apache.hudi.storage.HoodieStorage;
import org.apache.hudi.storage.StoragePath;
import org.apache.hudi.table.BulkInsertPartitioner;

import org.apache.avro.generic.GenericRecord;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.HoodieDataTypeUtils;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.types.StructType;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

import scala.Tuple2;

import static org.apache.hudi.common.util.CommitUtils.getCheckpointValueAsString;

/**
 * Utilities used throughout the data source.
 */
public class DataSourceUtils {

  private static final Logger LOG = LoggerFactory.getLogger(DataSourceUtils.class);

  public static String getTablePath(HoodieStorage storage,
                                    List userProvidedPaths) throws IOException {
    LOG.info("Getting table path..");
    for (StoragePath path : userProvidedPaths) {
      try {
        Option tablePath = TablePathUtils.getTablePath(storage, path);
        if (tablePath.isPresent()) {
          return tablePath.get().toString();
        }
      } catch (HoodieException he) {
        LOG.warn("Error trying to get table path from " + path.toString(), he);
      }
    }

    throw new TableNotFoundException(userProvidedPaths.stream()
        .map(StoragePath::toString).collect(Collectors.joining(",")));
  }

  /**
   * Create a UserDefinedBulkInsertPartitioner class via reflection,
   * 
* if the class name of UserDefinedBulkInsertPartitioner is configured through the HoodieWriteConfig. * * @see HoodieWriteConfig#getUserDefinedBulkInsertPartitionerClass() */ public static Option createUserDefinedBulkInsertPartitioner(HoodieWriteConfig config) throws HoodieException { String bulkInsertPartitionerClass = config.getUserDefinedBulkInsertPartitionerClass(); try { return StringUtils.isNullOrEmpty(bulkInsertPartitionerClass) ? Option.empty() : Option.of((BulkInsertPartitioner) ReflectionUtils.loadClass(bulkInsertPartitionerClass, config)); } catch (Throwable e) { throw new HoodieException("Could not create UserDefinedBulkInsertPartitioner class " + bulkInsertPartitionerClass, e); } } /** * Create a UserDefinedBulkInsertPartitionerRows class via reflection, *
* if the class name of UserDefinedBulkInsertPartitioner is configured through the HoodieWriteConfig. * * @see HoodieWriteConfig#getUserDefinedBulkInsertPartitionerClass() */ public static Option>> createUserDefinedBulkInsertPartitionerWithRows(HoodieWriteConfig config) throws HoodieException { String bulkInsertPartitionerClass = config.getUserDefinedBulkInsertPartitionerClass(); try { return StringUtils.isNullOrEmpty(bulkInsertPartitionerClass) ? Option.empty() : Option.of((BulkInsertPartitioner) ReflectionUtils.loadClass(bulkInsertPartitionerClass, config)); } catch (Throwable e) { throw new HoodieException("Could not create UserDefinedBulkInsertPartitionerRows class " + bulkInsertPartitionerClass, e); } } /** * Create a payload class via reflection, passing in an ordering/precombine value. */ public static HoodieRecordPayload createPayload(String payloadClass, GenericRecord record, Comparable orderingVal) throws IOException { try { return (HoodieRecordPayload) ReflectionUtils.loadClass(payloadClass, new Class[] {GenericRecord.class, Comparable.class}, record, orderingVal); } catch (Throwable e) { throw new IOException("Could not create payload for class: " + payloadClass, e); } } public static Map getExtraMetadata(Map properties) { Map extraMetadataMap = new HashMap<>(); if (properties.containsKey(DataSourceWriteOptions.COMMIT_METADATA_KEYPREFIX().key())) { properties.entrySet().forEach(entry -> { if (entry.getKey().startsWith(properties.get(DataSourceWriteOptions.COMMIT_METADATA_KEYPREFIX().key()))) { extraMetadataMap.put(entry.getKey(), entry.getValue()); } }); } if (properties.containsKey(HoodieSparkSqlWriter.SPARK_STREAMING_BATCH_ID())) { extraMetadataMap.put(HoodieStreamingSink.SINK_CHECKPOINT_KEY(), getCheckpointValueAsString(properties.getOrDefault(DataSourceWriteOptions.STREAMING_CHECKPOINT_IDENTIFIER().key(), DataSourceWriteOptions.STREAMING_CHECKPOINT_IDENTIFIER().defaultValue()), properties.get(HoodieSparkSqlWriter.SPARK_STREAMING_BATCH_ID()))); } return extraMetadataMap; } /** * Create a payload class via reflection, do not ordering/precombine value. */ public static HoodieRecordPayload createPayload(String payloadClass, GenericRecord record) throws IOException { try { return (HoodieRecordPayload) ReflectionUtils.loadClass(payloadClass, new Class[] {Option.class}, Option.of(record)); } catch (Throwable e) { throw new IOException("Could not create payload for class: " + payloadClass, e); } } public static HoodieWriteConfig createHoodieConfig(String schemaStr, String basePath, String tblName, Map parameters) { boolean asyncCompact = Boolean.parseBoolean(parameters.get(DataSourceWriteOptions.ASYNC_COMPACT_ENABLE().key())); boolean inlineCompact = false; if (parameters.containsKey(HoodieCompactionConfig.INLINE_COMPACT.key())) { // if inline is set, fetch the value from it. inlineCompact = Boolean.parseBoolean(parameters.get(HoodieCompactionConfig.INLINE_COMPACT.key())); } // if inline is false, derive the value from asyncCompact and table type if (!inlineCompact) { inlineCompact = !asyncCompact && parameters.get(DataSourceWriteOptions.TABLE_TYPE().key()) .equals(DataSourceWriteOptions.MOR_TABLE_TYPE_OPT_VAL()); } // insert/bulk-insert combining to be true, if filtering for duplicates boolean combineInserts = Boolean.parseBoolean(parameters.get(DataSourceWriteOptions.INSERT_DROP_DUPS().key())); HoodieWriteConfig.Builder builder = HoodieWriteConfig.newBuilder() .withPath(basePath).withAutoCommit(false).combineInput(combineInserts, true); if (schemaStr != null) { builder = builder.withSchema(schemaStr); } return builder.forTable(tblName) .withCompactionConfig(HoodieCompactionConfig.newBuilder() .withInlineCompaction(inlineCompact).build()) .withPayloadConfig(HoodiePayloadConfig.newBuilder() .withPayloadClass(parameters.get(DataSourceWriteOptions.PAYLOAD_CLASS_NAME().key())) .withPayloadOrderingField(parameters.get(DataSourceWriteOptions.PRECOMBINE_FIELD().key())) .build()) // override above with Hoodie configs specified as options. .withProps(parameters).build(); } public static SparkRDDWriteClient createHoodieClient(JavaSparkContext jssc, String schemaStr, String basePath, String tblName, Map parameters) { return new SparkRDDWriteClient<>(new HoodieSparkEngineContext(jssc), createHoodieConfig(schemaStr, basePath, tblName, parameters)); } public static HoodieWriteResult doWriteOperation(SparkRDDWriteClient client, JavaRDD hoodieRecords, String instantTime, WriteOperationType operation, Boolean isPrepped) throws HoodieException { switch (operation) { case BULK_INSERT: Option userDefinedBulkInsertPartitioner = createUserDefinedBulkInsertPartitioner(client.getConfig()); return new HoodieWriteResult(client.bulkInsert(hoodieRecords, instantTime, userDefinedBulkInsertPartitioner)); case INSERT: return new HoodieWriteResult(client.insert(hoodieRecords, instantTime)); case UPSERT: if (isPrepped) { return new HoodieWriteResult(client.upsertPreppedRecords(hoodieRecords, instantTime)); } return new HoodieWriteResult(client.upsert(hoodieRecords, instantTime)); case INSERT_OVERWRITE: return client.insertOverwrite(hoodieRecords, instantTime); case INSERT_OVERWRITE_TABLE: return client.insertOverwriteTable(hoodieRecords, instantTime); default: throw new HoodieException("Not a valid operation type for doWriteOperation: " + operation.toString()); } } public static HoodieWriteResult doDeleteOperation(SparkRDDWriteClient client, JavaRDD>> hoodieKeysAndLocations, String instantTime, boolean isPrepped) { if (isPrepped) { HoodieRecord.HoodieRecordType recordType = client.getConfig().getRecordMerger().getRecordType(); JavaRDD records = hoodieKeysAndLocations.map(tuple -> { HoodieRecord record = recordType == HoodieRecord.HoodieRecordType.AVRO ? new HoodieAvroRecord(tuple._1, new EmptyHoodieRecordPayload()) : new HoodieSparkRecord(tuple._1, null, false); record.setCurrentLocation(tuple._2.get()); return record; }); return new HoodieWriteResult(client.deletePrepped(records, instantTime)); } return new HoodieWriteResult(client.delete(hoodieKeysAndLocations.map(tuple -> tuple._1()), instantTime)); } public static HoodieWriteResult doDeletePartitionsOperation(SparkRDDWriteClient client, List partitionsToDelete, String instantTime) { return client.deletePartitions(partitionsToDelete, instantTime); } public static HoodieRecord createHoodieRecord(GenericRecord gr, Comparable orderingVal, HoodieKey hKey, String payloadClass, scala.Option recordLocation) throws IOException { HoodieRecordPayload payload = DataSourceUtils.createPayload(payloadClass, gr, orderingVal); HoodieAvroRecord record = new HoodieAvroRecord<>(hKey, payload); if (recordLocation.isDefined()) { record.setCurrentLocation(recordLocation.get()); } return record; } public static HoodieRecord createHoodieRecord(GenericRecord gr, HoodieKey hKey, String payloadClass, scala.Option recordLocation) throws IOException { HoodieRecordPayload payload = DataSourceUtils.createPayload(payloadClass, gr); HoodieAvroRecord record = new HoodieAvroRecord<>(hKey, payload); if (recordLocation.isDefined()) { record.setCurrentLocation(recordLocation.get()); } return record; } /** * Drop records already present in the dataset. * * @param jssc JavaSparkContext * @param incomingHoodieRecords HoodieRecords to deduplicate * @param writeConfig HoodieWriteConfig */ @SuppressWarnings("unchecked") public static JavaRDD dropDuplicates(JavaSparkContext jssc, JavaRDD incomingHoodieRecords, HoodieWriteConfig writeConfig) { try { SparkRDDReadClient client = new SparkRDDReadClient<>(new HoodieSparkEngineContext(jssc), writeConfig); return client.tagLocation(incomingHoodieRecords) .filter(r -> !((HoodieRecord) r).isCurrentLocationKnown()); } catch (TableNotFoundException e) { // this will be executed when there is no hoodie table yet // so no dups to drop return incomingHoodieRecords; } } @SuppressWarnings("unchecked") public static JavaRDD dropDuplicates(JavaSparkContext jssc, JavaRDD incomingHoodieRecords, Map parameters) { HoodieWriteConfig writeConfig = HoodieWriteConfig.newBuilder().withPath(parameters.get("path")).withProps(parameters).build(); return dropDuplicates(jssc, incomingHoodieRecords, writeConfig); } /** * Checks whether default value (false) of "hoodie.parquet.writelegacyformat.enabled" should be * overridden in case: * *
    *
  • Property has not been explicitly set by the writer
  • *
  • Data schema contains {@code DecimalType} that would be affected by it
  • *
* * If both of the aforementioned conditions are true, will override the default value of the config * (by essentially setting the value) to make sure that the produced Parquet data files could be * read by {@code AvroParquetReader} * * @param properties properties specified by the writer * @param schema schema of the dataset being written */ public static void tryOverrideParquetWriteLegacyFormatProperty(Map properties, StructType schema) { if (HoodieDataTypeUtils.hasSmallPrecisionDecimalType(schema) && properties.get(HoodieStorageConfig.PARQUET_WRITE_LEGACY_FORMAT_ENABLED.key()) == null) { // ParquetWriteSupport writes DecimalType to parquet as INT32/INT64 when the scale of decimalType // is less than {@code Decimal.MAX_LONG_DIGITS}, but {@code AvroParquetReader} which is used by // {@code HoodieParquetReader} does not support DecimalType encoded as INT32/INT64 as. // // To work this problem around we're checking whether // - Schema contains any decimals that could be encoded as INT32/INT64 // - {@code HoodieStorageConfig.PARQUET_WRITE_LEGACY_FORMAT_ENABLED} has not been explicitly // set by the writer // // If both of these conditions are true, then we override the default value of {@code // HoodieStorageConfig.PARQUET_WRITE_LEGACY_FORMAT_ENABLED} and set it to "true" LOG.warn("Small Decimal Type found in the persisted schema, reverting default value of 'hoodie.parquet.writelegacyformat.enabled' to true"); properties.put(HoodieStorageConfig.PARQUET_WRITE_LEGACY_FORMAT_ENABLED.key(), "true"); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy