All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.index.bloom.BucketizedBloomCheckPartitioner Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi.index.bloom;

import org.apache.hudi.common.model.HoodieFileGroupId;
import org.apache.hudi.common.util.NumericUtils;
import org.apache.hudi.common.util.collection.Pair;

import org.apache.spark.Partitioner;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * Partitions bloom filter checks by spreading out comparisons across buckets of work.
 *
 * Each bucket incurs the following cost
 * 
 * 
 *   1) Read bloom filter from file footer
 *   2) Check keys against bloom filter
 *   3) [Conditional] If any key had a hit, open file and check
 * 
* * The partitioner performs a two phase bin packing algorithm, to pack enough work into each bucket such that cost of * (1) & (3) is amortized. Also, avoids any skews in the sort based approach, by directly partitioning by the file to be * checked against and ensuring each partition has similar number of buckets. Performance tests show that this approach * could bound the amount of skew to std_dev(numberOfBucketsPerPartition) * cost of (3), lower than sort partitioning. * * Approach has two goals : * *
 *   1) Pack as many buckets from same file group into same partition, to amortize cost of (1) and (2) further
 *   2) Spread buckets across partitions evenly to achieve skew reduction
 * 
*/ public class BucketizedBloomCheckPartitioner extends Partitioner { private static final Logger LOG = LoggerFactory.getLogger(BucketizedBloomCheckPartitioner.class); private int partitions; /** * Stores the final mapping of a file group to a list of partitions for its keys. */ private Map> fileGroupToPartitions; /** * Create a partitioner that computes a plan based on provided workload characteristics. * * @param targetPartitions maximum number of partitions to target * @param fileGroupToComparisons number of expected comparisons per file group * @param keysPerBucket maximum number of keys to pack in a single bucket */ public BucketizedBloomCheckPartitioner(int targetPartitions, Map fileGroupToComparisons, int keysPerBucket) { this.fileGroupToPartitions = new HashMap<>(); Map bucketsPerFileGroup = new HashMap<>(); // Compute the buckets needed per file group, using simple uniform distribution fileGroupToComparisons.forEach((f, c) -> bucketsPerFileGroup.put(f, (int) Math.ceil((c * 1.0) / keysPerBucket))); int totalBuckets = bucketsPerFileGroup.values().stream().mapToInt(i -> i).sum(); // If totalBuckets > targetPartitions, no need to have extra partitions this.partitions = Math.min(targetPartitions, totalBuckets); // PHASE 1 : start filling upto minimum number of buckets into partitions, taking all but one bucket from each file // This tries to first optimize for goal 1 above, with knowledge that each partition needs a certain minimum number // of buckets and assigns buckets in the same order as file groups. If we were to simply round robin, then buckets // for a file group is more or less guaranteed to be placed on different partitions all the time. int minBucketsPerPartition = Math.max((int) Math.floor((1.0 * totalBuckets) / partitions), 1); LOG.info(String.format("TotalBuckets %d, min_buckets/partition %d", totalBuckets, minBucketsPerPartition)); int[] bucketsFilled = new int[partitions]; Map bucketsFilledPerFileGroup = new HashMap<>(); int partitionIndex = 0; for (Map.Entry e : bucketsPerFileGroup.entrySet()) { for (int b = 0; b < Math.max(1, e.getValue() - 1); b++) { // keep filled counts upto date bucketsFilled[partitionIndex]++; AtomicInteger cnt = bucketsFilledPerFileGroup.getOrDefault(e.getKey(), new AtomicInteger(0)); cnt.incrementAndGet(); bucketsFilledPerFileGroup.put(e.getKey(), cnt); // mark this partition against the file group List partitionList = this.fileGroupToPartitions.getOrDefault(e.getKey(), new ArrayList<>()); partitionList.add(partitionIndex); this.fileGroupToPartitions.put(e.getKey(), partitionList); // switch to new partition if needed if (bucketsFilled[partitionIndex] >= minBucketsPerPartition) { partitionIndex = (partitionIndex + 1) % partitions; } } } // PHASE 2 : for remaining unassigned buckets, round robin over partitions once. Since we withheld 1 bucket from // each file group uniformly, this remaining is also an uniform mix across file groups. We just round robin to // optimize for goal 2. for (Map.Entry e : bucketsPerFileGroup.entrySet()) { int remaining = e.getValue() - bucketsFilledPerFileGroup.get(e.getKey()).intValue(); for (int r = 0; r < remaining; r++) { // mark this partition against the file group this.fileGroupToPartitions.get(e.getKey()).add(partitionIndex); bucketsFilled[partitionIndex]++; partitionIndex = (partitionIndex + 1) % partitions; } } if (LOG.isDebugEnabled()) { LOG.debug("Partitions assigned per file groups :" + fileGroupToPartitions); StringBuilder str = new StringBuilder(); for (int i = 0; i < bucketsFilled.length; i++) { str.append("p" + i + " : " + bucketsFilled[i] + ","); } LOG.debug("Num buckets assigned per file group :" + str); } } @Override public int numPartitions() { return partitions; } @Override public int getPartition(Object key) { final Pair parts = (Pair) key; // TODO replace w/ more performant hash final long hashOfKey = NumericUtils.getMessageDigestHash("MD5", parts.getRight()); final List candidatePartitions = fileGroupToPartitions.get(parts.getLeft()); final int idx = (int) Math.floorMod((int) hashOfKey, candidatePartitions.size()); assert idx >= 0; return candidatePartitions.get(idx); } Map> getFileGroupToPartitions() { return fileGroupToPartitions; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy