All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.BaseFileOnlyRelation.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi

import org.apache.hudi.DataSourceReadOptions.ENABLE_HOODIE_FILE_INDEX
import org.apache.hudi.HoodieBaseRelation.projectReader
import org.apache.hudi.common.table.HoodieTableMetaClient
import org.apache.hudi.hadoop.HoodieROTablePathFilter
import org.apache.hudi.storage.{StoragePath, StoragePathInfo}

import org.apache.hadoop.conf.Configuration
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.Expression
import org.apache.spark.sql.execution.datasources._
import org.apache.spark.sql.sources.{BaseRelation, Filter}
import org.apache.spark.sql.types.StructType

/**
 * [[BaseRelation]] implementation only reading Base files of Hudi tables, essentially supporting following querying
 * modes:
 * 
    *
  • For COW tables: Snapshot
  • *
  • For MOR tables: Read-optimized
  • *
* * NOTE: The reason this Relation is used in-liue of Spark's default [[HadoopFsRelation]] is primarily due to the * fact that it injects real partition's path as the value of the partition field, which Hudi ultimately persists * as part of the record payload. In some cases, however, partition path might not necessarily be equal to the * verbatim value of the partition path field (when custom [[KeyGenerator]] is used) therefore leading to incorrect * partition field values being written */ case class BaseFileOnlyRelation(override val sqlContext: SQLContext, override val metaClient: HoodieTableMetaClient, override val optParams: Map[String, String], private val userSchema: Option[StructType], private val globPaths: Seq[StoragePath], private val prunedDataSchema: Option[StructType] = None) extends HoodieBaseRelation(sqlContext, metaClient, optParams, userSchema, prunedDataSchema) with SparkAdapterSupport { case class HoodieBaseFileSplit(filePartition: FilePartition) extends HoodieFileSplit override type FileSplit = HoodieBaseFileSplit override type Relation = BaseFileOnlyRelation // TODO(HUDI-3204) this is to override behavior (exclusively) for COW tables to always extract // partition values from partition path // For more details please check HUDI-4161 // NOTE: This override has to mirror semantic of whenever this Relation is converted into [[HadoopFsRelation]], // which is currently done for all cases, except when Schema Evolution is enabled override protected val shouldExtractPartitionValuesFromPartitionPath: Boolean = internalSchemaOpt.isEmpty override lazy val mandatoryFields: Seq[String] = Seq.empty // Before Spark 3.4.0: PartitioningAwareFileIndex.BASE_PATH_PARAM // Since Spark 3.4.0: FileIndexOptions.BASE_PATH_PARAM val BASE_PATH_PARAM = "basePath" override def updatePrunedDataSchema(prunedSchema: StructType): Relation = this.copy(prunedDataSchema = Some(prunedSchema)) protected override def composeRDD(fileSplits: Seq[HoodieBaseFileSplit], tableSchema: HoodieTableSchema, requiredSchema: HoodieTableSchema, requestedColumns: Array[String], filters: Array[Filter]): RDD[InternalRow] = { val (partitionSchema, dataSchema, requiredDataSchema) = tryPrunePartitionColumns(tableSchema, requiredSchema) val baseFileReader = createBaseFileReader( spark = sparkSession, partitionSchema = partitionSchema, dataSchema = dataSchema, requiredDataSchema = requiredDataSchema, filters = filters, options = optParams, // NOTE: We have to fork the Hadoop Config here as Spark will be modifying it // to configure Parquet reader appropriately hadoopConf = embedInternalSchema(new Configuration(conf), requiredSchema.internalSchema) ) // NOTE: In some case schema of the reader's output (reader's schema) might not match the schema expected by the caller. // This could occur for ex, when requested schema contains partition columns which might not be persisted w/in the // data file, but instead would be parsed from the partition path. In that case output of the file-reader will have // different ordering of the fields than the original required schema (for more details please check out // [[ParquetFileFormat]] impl). In that case we have to project the rows from the file-reader's schema // back into the one expected by the caller val projectedReader = projectReader(baseFileReader, requiredSchema.structTypeSchema) // SPARK-37273 FileScanRDD constructor changed in SPARK 3.3 sparkAdapter.createHoodieFileScanRDD(sparkSession, projectedReader.apply, fileSplits.map(_.filePartition), requiredSchema.structTypeSchema) .asInstanceOf[HoodieUnsafeRDD] } protected def collectFileSplits(partitionFilters: Seq[Expression], dataFilters: Seq[Expression]): Seq[HoodieBaseFileSplit] = { val fileSlices = listLatestFileSlices(globPaths, partitionFilters, dataFilters) val fileSplits = fileSlices.flatMap { fileSlice => // TODO fix, currently assuming parquet as underlying format val pathInfo: StoragePathInfo = fileSlice.getBaseFile.get.getPathInfo HoodieDataSourceHelper.splitFiles( sparkSession = sparkSession, file = pathInfo, partitionValues = getPartitionColumnsAsInternalRow(pathInfo) ) } // NOTE: It's important to order the splits in the reverse order of their // size so that we can subsequently bucket them in an efficient manner .sortBy(_.length)(implicitly[Ordering[Long]].reverse) val maxSplitBytes = sparkSession.sessionState.conf.filesMaxPartitionBytes sparkAdapter.getFilePartitions(sparkSession, fileSplits, maxSplitBytes) .map(HoodieBaseFileSplit.apply) } /** * NOTE: We have to fallback to [[HadoopFsRelation]] to make sure that all of the Spark optimizations could be * equally applied to Hudi tables, since some of those are predicated on the usage of [[HadoopFsRelation]], * and won't be applicable in case of us using our own custom relations (one of such optimizations is [[SchemaPruning]] * rule; you can find more details in HUDI-3896) */ def toHadoopFsRelation: HadoopFsRelation = { val enableFileIndex = HoodieSparkConfUtils.getConfigValue(optParams, sparkSession.sessionState.conf, ENABLE_HOODIE_FILE_INDEX.key, ENABLE_HOODIE_FILE_INDEX.defaultValue.toString).toBoolean if (enableFileIndex && globPaths.isEmpty) { // NOTE: There are currently 2 ways partition values could be fetched: // - Source columns (producing the values used for physical partitioning) will be read // from the data file // - Values parsed from the actual partition path would be appended to the final dataset // // In the former case, we don't need to provide the partition-schema to the relation, // therefore we simply stub it w/ empty schema and use full table-schema as the one being // read from the data file. // // In the latter, we have to specify proper partition schema as well as "data"-schema, essentially // being a table-schema with all partition columns stripped out val (partitionSchema, dataSchema) = if (shouldExtractPartitionValuesFromPartitionPath) { (fileIndex.partitionSchema, fileIndex.dataSchema) } else { (StructType(Nil), tableStructSchema) } HadoopFsRelation( location = fileIndex, partitionSchema = partitionSchema, dataSchema = dataSchema, bucketSpec = None, fileFormat = fileFormat, optParams)(sparkSession) } else { val readPathsStr = optParams.get(DataSourceReadOptions.READ_PATHS.key) val extraReadPaths = readPathsStr.map(p => p.split(",").toSeq).getOrElse(Seq()) // NOTE: Spark is able to infer partitioning values from partition path only when Hive-style partitioning // scheme is used. Therefore, we fallback to reading the table as non-partitioned (specifying // partitionColumns = Seq.empty) whenever Hive-style partitioning is not involved val partitionColumns: Seq[String] = if (tableConfig.getHiveStylePartitioningEnable.toBoolean) { this.partitionColumns } else { Seq.empty } DataSource.apply( sparkSession = sparkSession, paths = extraReadPaths, // Here we should specify the schema to the latest commit schema since // the table schema evolution. userSpecifiedSchema = userSchema.orElse(Some(tableStructSchema)), className = fileFormatClassName, options = optParams ++ Map( // Since we're reading the table as just collection of files we have to make sure // we only read the latest version of every Hudi's file-group, which might be compacted, clustered, etc. // while keeping previous versions of the files around as well. // // We rely on [[HoodieROTablePathFilter]], to do proper filtering to assure that "mapreduce.input.pathFilter.class" -> classOf[HoodieROTablePathFilter].getName, // We have to override [[EXTRACT_PARTITION_VALUES_FROM_PARTITION_PATH]] setting, since // the relation might have this setting overridden DataSourceReadOptions.EXTRACT_PARTITION_VALUES_FROM_PARTITION_PATH.key -> shouldExtractPartitionValuesFromPartitionPath.toString, // NOTE: We have to specify table's base-path explicitly, since we're requesting Spark to read it as a // list of globbed paths which complicates partitioning discovery for Spark. // Please check [[PartitioningAwareFileIndex#basePaths]] comment for more details. BASE_PATH_PARAM -> metaClient.getBasePath.toString ), partitionColumns = partitionColumns ) .resolveRelation() .asInstanceOf[HadoopFsRelation] } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy