org.apache.hudi.cdc.HoodieCDCRDD.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hudi.cdc
import org.apache.hudi.{AvroConversionUtils, AvroProjection, HoodieFileIndex, HoodieMergeOnReadFileSplit, HoodieTableSchema, HoodieTableState, HoodieUnsafeRDD, LogFileIterator, RecordMergingFileIterator, SparkAdapterSupport}
import org.apache.hudi.HoodieBaseRelation.BaseFileReader
import org.apache.hudi.HoodieConversionUtils._
import org.apache.hudi.HoodieDataSourceHelper.AvroDeserializerSupport
import org.apache.hudi.avro.HoodieAvroUtils
import org.apache.hudi.common.config.HoodieMetadataConfig
import org.apache.hudi.common.model._
import org.apache.hudi.common.table.HoodieTableMetaClient
import org.apache.hudi.common.table.cdc.{HoodieCDCFileSplit, HoodieCDCUtils}
import org.apache.hudi.common.table.cdc.HoodieCDCInferenceCase._
import org.apache.hudi.common.table.cdc.HoodieCDCOperation._
import org.apache.hudi.common.table.cdc.HoodieCDCSupplementalLoggingMode._
import org.apache.hudi.common.table.log.HoodieCDCLogRecordIterator
import org.apache.hudi.common.util.ValidationUtils.checkState
import org.apache.hudi.config.HoodiePayloadConfig
import org.apache.hudi.keygen.factory.HoodieSparkKeyGeneratorFactory
import org.apache.hudi.storage.StoragePath
import org.apache.avro.Schema
import org.apache.avro.generic.{GenericData, GenericRecord, IndexedRecord}
import org.apache.hadoop.fs.Path
import org.apache.spark.{Partition, SerializableWritable, TaskContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.HoodieCatalystExpressionUtils.generateUnsafeProjection
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.avro.HoodieAvroDeserializer
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.Projection
import org.apache.spark.sql.execution.datasources.PartitionedFile
import org.apache.spark.sql.types.StructType
import org.apache.spark.unsafe.types.UTF8String
import java.io.Closeable
import java.util.Properties
import java.util.stream.Collectors
import scala.annotation.tailrec
import scala.collection.JavaConverters._
import scala.collection.mutable
/**
* The split that will be processed by spark task.
* The [[changes]] should be sorted first.
*/
case class HoodieCDCFileGroupSplit(changes: Array[HoodieCDCFileSplit])
/**
* The Spark [[Partition]]'s implementation.
*/
case class HoodieCDCFileGroupPartition(
index: Int,
split: HoodieCDCFileGroupSplit
) extends Partition
class HoodieCDCRDD(
spark: SparkSession,
metaClient: HoodieTableMetaClient,
parquetReader: PartitionedFile => Iterator[InternalRow],
originTableSchema: HoodieTableSchema,
cdcSchema: StructType,
requiredCdcSchema: StructType,
@transient changes: Array[HoodieCDCFileGroupSplit])
extends RDD[InternalRow](spark.sparkContext, Nil) with HoodieUnsafeRDD {
@transient
private val hadoopConf = spark.sparkContext.hadoopConfiguration
private val confBroadcast = spark.sparkContext.broadcast(new SerializableWritable(hadoopConf))
private val cdcSupplementalLoggingMode = metaClient.getTableConfig.cdcSupplementalLoggingMode
private val props = HoodieFileIndex.getConfigProperties(spark, Map.empty, metaClient.getTableConfig)
protected val payloadProps: Properties = Option(metaClient.getTableConfig.getPreCombineField)
.map { preCombineField =>
HoodiePayloadConfig.newBuilder
.withPayloadOrderingField(preCombineField)
.build
.getProps
}.getOrElse(new Properties())
override def compute(split: Partition, context: TaskContext): Iterator[InternalRow] = {
val cdcPartition = split.asInstanceOf[HoodieCDCFileGroupPartition]
new CDCFileGroupIterator(cdcPartition.split, metaClient)
}
override protected def getPartitions: Array[Partition] = {
changes.zipWithIndex.map{ case (split, index) =>
HoodieCDCFileGroupPartition(index, split)
}.toArray
}
private class CDCFileGroupIterator(
split: HoodieCDCFileGroupSplit,
metaClient: HoodieTableMetaClient
) extends Iterator[InternalRow] with SparkAdapterSupport with AvroDeserializerSupport with Closeable {
private lazy val storage = metaClient.getStorage
private lazy val conf = confBroadcast.value.value
private lazy val basePath = metaClient.getBasePath
private lazy val tableConfig = metaClient.getTableConfig
private lazy val populateMetaFields = tableConfig.populateMetaFields()
private lazy val keyGenerator = {
HoodieSparkKeyGeneratorFactory.createKeyGenerator(tableConfig.getProps())
}
private lazy val recordKeyField: String = if (populateMetaFields) {
HoodieRecord.RECORD_KEY_METADATA_FIELD
} else {
val keyFields = metaClient.getTableConfig.getRecordKeyFields.get()
checkState(keyFields.length == 1)
keyFields.head
}
private lazy val preCombineFieldOpt: Option[String] = Option(metaClient.getTableConfig.getPreCombineField)
private lazy val tableState = {
val metadataConfig = HoodieMetadataConfig.newBuilder()
.fromProperties(props)
.build()
HoodieTableState(
basePath.toUri.toString,
Some(split.changes.last.getInstant),
recordKeyField,
preCombineFieldOpt,
usesVirtualKeys = !populateMetaFields,
metaClient.getTableConfig.getPayloadClass,
metadataConfig,
// TODO support CDC with spark record
recordMergeImplClasses = List(classOf[HoodieAvroRecordMerger].getName),
recordMergeStrategyId = HoodieRecordMerger.PAYLOAD_BASED_MERGE_STRATEGY_UUID
)
}
protected override val avroSchema: Schema = new Schema.Parser().parse(originTableSchema.avroSchemaStr)
protected override val structTypeSchema: StructType = originTableSchema.structTypeSchema
private lazy val serializer = sparkAdapter.createAvroSerializer(originTableSchema.structTypeSchema,
avroSchema, nullable = false)
private lazy val avroProjection = AvroProjection.create(avroSchema)
private lazy val cdcAvroSchema: Schema = HoodieCDCUtils.schemaBySupplementalLoggingMode(
cdcSupplementalLoggingMode,
HoodieAvroUtils.removeMetadataFields(avroSchema)
)
private lazy val cdcSparkSchema: StructType = AvroConversionUtils.convertAvroSchemaToStructType(cdcAvroSchema)
private lazy val sparkPartitionedFileUtils = sparkAdapter.getSparkPartitionedFileUtils
/**
* The deserializer used to convert the CDC GenericRecord to Spark InternalRow.
*/
private lazy val cdcRecordDeserializer: HoodieAvroDeserializer = {
sparkAdapter.createAvroDeserializer(cdcAvroSchema, cdcSparkSchema)
}
private lazy val projection: Projection = generateUnsafeProjection(cdcSchema, requiredCdcSchema)
// Iterator on cdc file
private val cdcFileIter = split.changes.iterator
// The instant that is currently being processed
private var currentInstant: String = _
// The change file that is currently being processed
private var currentCDCFileSplit: HoodieCDCFileSplit = _
/**
* Two cases will use this to iterator the records:
* 1) extract the change data from the base file directly, including 'BASE_FILE_INSERT' and 'BASE_FILE_DELETE'.
* 2) when the type of cdc file is 'REPLACE_COMMIT',
* use this to trace the records that are converted from the '[[beforeImageRecords]]
*/
private var recordIter: Iterator[InternalRow] = Iterator.empty
/**
* Only one case where it will be used is that extract the change data from log files for mor table.
* At the time, 'logRecordIter' will work with [[beforeImageRecords]] that keep all the records of the previous file slice.
*/
private var logRecordIter: Iterator[(String, HoodieRecord[_])] = Iterator.empty
/**
* Only one case where it will be used is that extract the change data from cdc log files.
*/
private var cdcLogRecordIterator: HoodieCDCLogRecordIterator = _
/**
* The next record need to be returned when call next().
*/
protected var recordToLoad: InternalRow = _
/**
* The list of files to which 'beforeImageRecords' belong.
* Use it to determine if 'beforeImageRecords' contains all the required data that extract
* the change data from the current cdc file.
*/
private val beforeImageFiles: mutable.ArrayBuffer[String] = mutable.ArrayBuffer.empty
/**
* Keep the before-image data. There cases will use this:
* 1) the cdc infer case is [[LOG_FILE]];
* 2) the cdc infer case is [[AS_IS]] and [[cdcSupplementalLoggingMode]] is 'op_key'.
*/
private var beforeImageRecords: mutable.Map[String, GenericRecord] = mutable.Map.empty
/**
* Keep the after-image data. Only one case will use this:
* the cdc infer case is [[AS_IS]] and [[cdcSupplementalLoggingMode]] is [[OP_KEY_ONLY]] or [[DATA_BEFORE]].
*/
private var afterImageRecords: mutable.Map[String, InternalRow] = mutable.Map.empty
private var internalRowToJsonStringConverter = new InternalRowToJsonStringConverter(originTableSchema)
private def needLoadNextFile: Boolean = {
!recordIter.hasNext &&
!logRecordIter.hasNext &&
(cdcLogRecordIterator == null || !cdcLogRecordIterator.hasNext)
}
@tailrec final def hasNextInternal: Boolean = {
if (needLoadNextFile) {
loadCdcFile()
}
if (currentCDCFileSplit == null) {
false
} else {
currentCDCFileSplit.getCdcInferCase match {
case BASE_FILE_INSERT | BASE_FILE_DELETE | REPLACE_COMMIT =>
if (recordIter.hasNext && loadNext()) {
true
} else {
hasNextInternal
}
case LOG_FILE =>
if (logRecordIter.hasNext && loadNext()) {
true
} else {
hasNextInternal
}
case AS_IS =>
if (cdcLogRecordIterator.hasNext && loadNext()) {
true
} else {
hasNextInternal
}
}
}
}
override def hasNext: Boolean = hasNextInternal
override final def next(): InternalRow = {
projection(recordToLoad)
}
def loadNext(): Boolean = {
var loaded = false
currentCDCFileSplit.getCdcInferCase match {
case BASE_FILE_INSERT =>
val originRecord = recordIter.next()
recordToLoad.update(3, convertRowToJsonString(originRecord))
loaded = true
case BASE_FILE_DELETE =>
val originRecord = recordIter.next()
recordToLoad.update(2, convertRowToJsonString(originRecord))
loaded = true
case LOG_FILE =>
loaded = loadNextLogRecord()
case AS_IS =>
val record = cdcLogRecordIterator.next().asInstanceOf[GenericRecord]
cdcSupplementalLoggingMode match {
case `DATA_BEFORE_AFTER` =>
recordToLoad.update(0, convertToUTF8String(String.valueOf(record.get(0))))
val before = record.get(2).asInstanceOf[GenericRecord]
recordToLoad.update(2, recordToJsonAsUTF8String(before))
val after = record.get(3).asInstanceOf[GenericRecord]
recordToLoad.update(3, recordToJsonAsUTF8String(after))
case `DATA_BEFORE` =>
val row = cdcRecordDeserializer.deserialize(record).get.asInstanceOf[InternalRow]
val op = row.getString(0)
val recordKey = row.getString(1)
recordToLoad.update(0, convertToUTF8String(op))
val before = record.get(2).asInstanceOf[GenericRecord]
recordToLoad.update(2, recordToJsonAsUTF8String(before))
parse(op) match {
case INSERT =>
recordToLoad.update(3, convertRowToJsonString(afterImageRecords(recordKey)))
case UPDATE =>
recordToLoad.update(3, convertRowToJsonString(afterImageRecords(recordKey)))
case _ =>
recordToLoad.update(3, null)
}
case _ =>
val row = cdcRecordDeserializer.deserialize(record).get.asInstanceOf[InternalRow]
val op = row.getString(0)
val recordKey = row.getString(1)
recordToLoad.update(0, convertToUTF8String(op))
parse(op) match {
case INSERT =>
recordToLoad.update(2, null)
recordToLoad.update(3, convertRowToJsonString(afterImageRecords(recordKey)))
case UPDATE =>
recordToLoad.update(2, recordToJsonAsUTF8String(beforeImageRecords(recordKey)))
recordToLoad.update(3, convertRowToJsonString(afterImageRecords(recordKey)))
case _ =>
recordToLoad.update(2, recordToJsonAsUTF8String(beforeImageRecords(recordKey)))
recordToLoad.update(3, null)
}
}
loaded = true
case REPLACE_COMMIT =>
val originRecord = recordIter.next()
recordToLoad.update(2, convertRowToJsonString(originRecord))
loaded = true
}
loaded
}
/**
* Load the next log record, and judge how to convert it to cdc format.
*/
private def loadNextLogRecord(): Boolean = {
var loaded = false
val (key, logRecord) = logRecordIter.next()
val indexedRecord = getInsertValue(logRecord)
if (indexedRecord.isEmpty) {
// it's a deleted record.
val existingRecordOpt = beforeImageRecords.remove(key)
if (existingRecordOpt.isEmpty) {
// no real record is deleted, just ignore.
logWarning("can not get any record that have the same key with the deleting logRecord.")
} else {
// there is a real record deleted.
recordToLoad.update(0, CDCRelation.CDC_OPERATION_DELETE)
recordToLoad.update(2, recordToJsonAsUTF8String(existingRecordOpt.get))
recordToLoad.update(3, null)
loaded = true
}
} else {
val existingRecordOpt = beforeImageRecords.get(key)
if (existingRecordOpt.isEmpty) {
// a new record is inserted.
val insertedRecord = avroProjection(indexedRecord.get.asInstanceOf[GenericRecord])
recordToLoad.update(0, CDCRelation.CDC_OPERATION_INSERT)
recordToLoad.update(2, null)
recordToLoad.update(3, recordToJsonAsUTF8String(insertedRecord))
// insert into beforeImageRecords
beforeImageRecords(key) = insertedRecord
loaded = true
} else {
// a existed record is updated.
val existingRecord = existingRecordOpt.get
val merged = merge(existingRecord, logRecord)
val mergeRecord = avroProjection(merged.asInstanceOf[GenericRecord])
if (existingRecord != mergeRecord) {
recordToLoad.update(0, CDCRelation.CDC_OPERATION_UPDATE)
recordToLoad.update(2, recordToJsonAsUTF8String(existingRecord))
recordToLoad.update(3, recordToJsonAsUTF8String(mergeRecord))
// update into beforeImageRecords
beforeImageRecords(key) = mergeRecord
loaded = true
}
}
}
loaded
}
private def loadCdcFile(): Unit = {
// reset all the iterator first.
recordIter = Iterator.empty
logRecordIter = Iterator.empty
beforeImageRecords.clear()
afterImageRecords.clear()
if (cdcLogRecordIterator != null) {
cdcLogRecordIterator.close()
cdcLogRecordIterator = null
}
if (cdcFileIter.hasNext) {
val split = cdcFileIter.next()
currentInstant = split.getInstant
currentCDCFileSplit = split
currentCDCFileSplit.getCdcInferCase match {
case BASE_FILE_INSERT =>
assert(currentCDCFileSplit.getCdcFiles != null && currentCDCFileSplit.getCdcFiles.size() == 1)
val absCDCPath = new StoragePath(basePath, currentCDCFileSplit.getCdcFiles.get(0))
val pathInfo = storage.getPathInfo(absCDCPath)
val pf = sparkPartitionedFileUtils.createPartitionedFile(
InternalRow.empty, absCDCPath, 0, pathInfo.getLength)
recordIter = parquetReader(pf)
case BASE_FILE_DELETE =>
assert(currentCDCFileSplit.getBeforeFileSlice.isPresent)
recordIter = loadFileSlice(currentCDCFileSplit.getBeforeFileSlice.get)
case LOG_FILE =>
assert(currentCDCFileSplit.getCdcFiles != null && currentCDCFileSplit.getCdcFiles.size() == 1
&& currentCDCFileSplit.getBeforeFileSlice.isPresent)
loadBeforeFileSliceIfNeeded(currentCDCFileSplit.getBeforeFileSlice.get)
val absLogPath = new StoragePath(basePath, currentCDCFileSplit.getCdcFiles.get(0))
val morSplit = HoodieMergeOnReadFileSplit(None, List(new HoodieLogFile(storage.getPathInfo(absLogPath))))
val logFileIterator = new LogFileIterator(morSplit, originTableSchema, originTableSchema, tableState, conf)
logRecordIter = logFileIterator.logRecordsPairIterator
case AS_IS =>
assert(currentCDCFileSplit.getCdcFiles != null && !currentCDCFileSplit.getCdcFiles.isEmpty)
// load beforeFileSlice to beforeImageRecords
if (currentCDCFileSplit.getBeforeFileSlice.isPresent) {
loadBeforeFileSliceIfNeeded(currentCDCFileSplit.getBeforeFileSlice.get)
}
// load afterFileSlice to afterImageRecords
if (currentCDCFileSplit.getAfterFileSlice.isPresent) {
val iter = loadFileSlice(currentCDCFileSplit.getAfterFileSlice.get())
afterImageRecords = mutable.Map.empty
iter.foreach { row =>
val key = getRecordKey(row)
afterImageRecords.put(key, row.copy())
}
}
val cdcLogFiles = currentCDCFileSplit.getCdcFiles.asScala.map { cdcFile =>
new HoodieLogFile(storage.getPathInfo(new StoragePath(basePath, cdcFile)))
}.toArray
cdcLogRecordIterator = new HoodieCDCLogRecordIterator(storage, cdcLogFiles, cdcAvroSchema)
case REPLACE_COMMIT =>
if (currentCDCFileSplit.getBeforeFileSlice.isPresent) {
loadBeforeFileSliceIfNeeded(currentCDCFileSplit.getBeforeFileSlice.get)
}
recordIter = beforeImageRecords.values.map { record =>
deserialize(record)
}.iterator
beforeImageRecords.clear()
}
resetRecordFormat()
} else {
currentInstant = null
currentCDCFileSplit = null
}
}
/**
* Initialize the partial fields of the data to be returned in advance to speed up.
*/
private def resetRecordFormat(): Unit = {
recordToLoad = currentCDCFileSplit.getCdcInferCase match {
case BASE_FILE_INSERT =>
InternalRow.fromSeq(Seq(
CDCRelation.CDC_OPERATION_INSERT, convertToUTF8String(currentInstant),
null, null))
case BASE_FILE_DELETE =>
InternalRow.fromSeq(Seq(
CDCRelation.CDC_OPERATION_DELETE, convertToUTF8String(currentInstant),
null, null))
case LOG_FILE =>
InternalRow.fromSeq(Seq(
null, convertToUTF8String(currentInstant),
null, null))
case AS_IS =>
InternalRow.fromSeq(Seq(
null, convertToUTF8String(currentInstant),
null, null))
case REPLACE_COMMIT =>
InternalRow.fromSeq(Seq(
CDCRelation.CDC_OPERATION_DELETE, convertToUTF8String(currentInstant),
null, null))
}
}
/**
* If [[beforeImageFiles]] are the list of file that we want to load exactly, use this directly.
* Otherwise we need to re-load what we need.
*/
private def loadBeforeFileSliceIfNeeded(fileSlice: FileSlice): Unit = {
val files = List(fileSlice.getBaseFile.get().getPath) ++
fileSlice.getLogFiles.collect(Collectors.toList[HoodieLogFile]).asScala
.map(f => f.getPath.toUri.toString).toList
val same = files.sorted == beforeImageFiles.sorted.toList
if (!same) {
// clear up the beforeImageRecords
beforeImageRecords.clear()
val iter = loadFileSlice(fileSlice)
iter.foreach { row =>
val key = getRecordKey(row)
// Due to the reuse buffer mechanism of Spark serialization,
// we have to copy the serialized result if we need to retain its reference
beforeImageRecords.put(key, serialize(row, copy = true))
}
// reset beforeImageFiles
beforeImageFiles.clear()
beforeImageFiles.append(files: _*)
}
}
private def loadFileSlice(fileSlice: FileSlice): Iterator[InternalRow] = {
val baseFileInfo = storage.getPathInfo(fileSlice.getBaseFile.get().getStoragePath)
val basePartitionedFile = sparkPartitionedFileUtils.createPartitionedFile(
InternalRow.empty,
baseFileInfo.getPath,
0,
baseFileInfo.getLength
)
val logFiles = fileSlice.getLogFiles
.sorted(HoodieLogFile.getLogFileComparator)
.collect(Collectors.toList[HoodieLogFile])
.asScala.toList
.filterNot(_.getFileName.endsWith(HoodieCDCUtils.CDC_LOGFILE_SUFFIX))
if (logFiles.isEmpty) {
// no log files, just load the base parquet file
parquetReader(basePartitionedFile)
} else {
// use [[RecordMergingFileIterator]] to load both the base file and log files
val morSplit = HoodieMergeOnReadFileSplit(Some(basePartitionedFile), logFiles)
new RecordMergingFileIterator(
morSplit,
BaseFileReader(parquetReader, originTableSchema.structTypeSchema),
originTableSchema,
originTableSchema,
tableState,
conf)
}
}
/**
* Convert InternalRow to json string.
*/
private def convertRowToJsonString(record: InternalRow): UTF8String = {
internalRowToJsonStringConverter.convert(record)
}
/**
* The data of string type is stored in InternalRow using UTF8String type.
*/
private def convertToUTF8String(str: String): UTF8String = {
UTF8String.fromString(str)
}
private def pathToString(p: Path): String = {
p.toUri.toString
}
private def serialize(curRowRecord: InternalRow, copy: Boolean = false): GenericRecord = {
val record = serializer.serialize(curRowRecord).asInstanceOf[GenericRecord]
if (copy) {
GenericData.get().deepCopy(record.getSchema, record)
} else {
record
}
}
private def recordToJsonAsUTF8String(record: GenericRecord): UTF8String = {
convertToUTF8String(HoodieCDCUtils.recordToJson(record))
}
private def getRecordKey(row: InternalRow): String = {
if (populateMetaFields) {
row.getString(structTypeSchema.fieldIndex(HoodieRecord.RECORD_KEY_METADATA_FIELD))
} else {
this.keyGenerator.getKey(serialize(row)).getRecordKey
}
}
private def getInsertValue(
record: HoodieRecord[_])
: Option[IndexedRecord] = {
toScalaOption(record.toIndexedRecord(avroSchema, payloadProps)).map(_.getData)
}
private def merge(curAvroRecord: GenericRecord, newRecord: HoodieRecord[_]): IndexedRecord = {
newRecord.getData.asInstanceOf[HoodieRecordPayload[_]].combineAndGetUpdateValue(curAvroRecord, avroSchema, payloadProps).get()
}
override def close(): Unit = {}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy