org.apache.hudi.HoodieSchemaUtils.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.hudi
import org.apache.hudi.HoodieSparkSqlWriter.{CANONICALIZE_SCHEMA, SQL_MERGE_INTO_WRITES}
import org.apache.hudi.avro.AvroSchemaUtils.{checkSchemaCompatible, checkValidEvolution, isCompatibleProjectionOf, isSchemaCompatible}
import org.apache.hudi.avro.HoodieAvroUtils
import org.apache.hudi.avro.HoodieAvroUtils.removeMetadataFields
import org.apache.hudi.common.config.{HoodieCommonConfig, HoodieConfig, TypedProperties}
import org.apache.hudi.common.model.HoodieRecord
import org.apache.hudi.common.table.{HoodieTableMetaClient, TableSchemaResolver}
import org.apache.hudi.config.HoodieWriteConfig
import org.apache.hudi.exception.SchemaCompatibilityException
import org.apache.hudi.internal.schema.InternalSchema
import org.apache.hudi.internal.schema.convert.AvroInternalSchemaConverter
import org.apache.hudi.internal.schema.utils.AvroSchemaEvolutionUtils
import org.apache.hudi.internal.schema.utils.AvroSchemaEvolutionUtils.reconcileSchemaRequirements
import org.apache.avro.Schema
import org.apache.spark.sql.types.StructType
import org.slf4j.LoggerFactory
import scala.collection.JavaConverters._
/**
* Util methods for Schema evolution in Hudi
*/
object HoodieSchemaUtils {
private val log = LoggerFactory.getLogger(getClass)
/**
* get latest internalSchema from table
*
* @param config instance of {@link HoodieConfig}
* @param tableMetaClient instance of HoodieTableMetaClient
* @return Option of InternalSchema. Will always be empty if schema on read is disabled
*/
def getLatestTableInternalSchema(config: HoodieConfig,
tableMetaClient: HoodieTableMetaClient): Option[InternalSchema] = {
if (!config.getBooleanOrDefault(DataSourceReadOptions.SCHEMA_EVOLUTION_ENABLED)) {
None
} else {
try {
val tableSchemaResolver = new TableSchemaResolver(tableMetaClient)
val internalSchemaOpt = tableSchemaResolver.getTableInternalSchemaFromCommitMetadata
if (internalSchemaOpt.isPresent) Some(internalSchemaOpt.get()) else None
} catch {
case _: Exception => None
}
}
}
/**
* Deduces writer's schema based on
*
* - Source's schema
* - Target table's schema (including Hudi's [[InternalSchema]] representation)
*
*/
def deduceWriterSchema(sourceSchema: Schema,
latestTableSchemaOpt: Option[Schema],
internalSchemaOpt: Option[InternalSchema],
opts: Map[String, String]): Schema = {
latestTableSchemaOpt match {
// If table schema is empty, then we use the source schema as a writer's schema.
case None => AvroInternalSchemaConverter.fixNullOrdering(sourceSchema)
// Otherwise, we need to make sure we reconcile incoming and latest table schemas
case Some(latestTableSchemaWithMetaFields) =>
// NOTE: Meta-fields will be unconditionally injected by Hudi writing handles, for the sake of deducing proper writer schema
// we're stripping them to make sure we can perform proper analysis
// add call to fix null ordering to ensure backwards compatibility
val latestTableSchema = AvroInternalSchemaConverter.fixNullOrdering(removeMetadataFields(latestTableSchemaWithMetaFields))
// Before validating whether schemas are compatible, we need to "canonicalize" source's schema
// relative to the table's one, by doing a (minor) reconciliation of the nullability constraints:
// for ex, if in incoming schema column A is designated as non-null, but it's designated as nullable
// in the table's one we want to proceed aligning nullability constraints w/ the table's schema
// Also, we promote types to the latest table schema if possible.
val shouldCanonicalizeSchema = opts.getOrElse(CANONICALIZE_SCHEMA.key, CANONICALIZE_SCHEMA.defaultValue.toString).toBoolean
val shouldReconcileSchema = opts.getOrElse(DataSourceWriteOptions.RECONCILE_SCHEMA.key(),
DataSourceWriteOptions.RECONCILE_SCHEMA.defaultValue().toString).toBoolean
val canonicalizedSourceSchema = if (shouldCanonicalizeSchema) {
canonicalizeSchema(sourceSchema, latestTableSchema, opts, !shouldReconcileSchema)
} else {
AvroInternalSchemaConverter.fixNullOrdering(sourceSchema)
}
if (shouldReconcileSchema) {
deduceWriterSchemaWithReconcile(sourceSchema, canonicalizedSourceSchema, latestTableSchema, internalSchemaOpt, opts)
} else {
deduceWriterSchemaWithoutReconcile(sourceSchema, canonicalizedSourceSchema, latestTableSchema, opts)
}
}
}
/**
* Deducing with disabled reconciliation.
* We have to validate that the source's schema is compatible w/ the table's latest schema,
* such that we're able to read existing table's records using [[sourceSchema]].
*/
private def deduceWriterSchemaWithoutReconcile(sourceSchema: Schema,
canonicalizedSourceSchema: Schema,
latestTableSchema: Schema,
opts: Map[String, String]): Schema = {
// NOTE: In some cases we need to relax constraint of incoming dataset's schema to be compatible
// w/ the table's one and allow schemas to diverge. This is required in cases where
// partial updates will be performed (for ex, `MERGE INTO` Spark SQL statement) and as such
// only incoming dataset's projection has to match the table's schema, and not the whole one
val mergeIntoWrites = opts.getOrElse(SQL_MERGE_INTO_WRITES.key(), SQL_MERGE_INTO_WRITES.defaultValue.toString).toBoolean
val shouldValidateSchemasCompatibility = opts.getOrElse(HoodieWriteConfig.AVRO_SCHEMA_VALIDATE_ENABLE.key,
HoodieWriteConfig.AVRO_SCHEMA_VALIDATE_ENABLE.defaultValue).toBoolean
val allowAutoEvolutionColumnDrop = opts.getOrElse(HoodieWriteConfig.SCHEMA_ALLOW_AUTO_EVOLUTION_COLUMN_DROP.key,
HoodieWriteConfig.SCHEMA_ALLOW_AUTO_EVOLUTION_COLUMN_DROP.defaultValue).toBoolean
val setNullForMissingColumns = opts.getOrElse(DataSourceWriteOptions.SET_NULL_FOR_MISSING_COLUMNS.key(),
DataSourceWriteOptions.SET_NULL_FOR_MISSING_COLUMNS.defaultValue).toBoolean
if (!mergeIntoWrites && !shouldValidateSchemasCompatibility && !allowAutoEvolutionColumnDrop) {
// Default behaviour
val reconciledSchema = if (setNullForMissingColumns) {
AvroSchemaEvolutionUtils.reconcileSchema(canonicalizedSourceSchema, latestTableSchema, setNullForMissingColumns)
} else {
canonicalizedSourceSchema
}
checkValidEvolution(reconciledSchema, latestTableSchema)
reconciledSchema
} else {
// If it's merge into writes, we don't check for projection nor schema compatibility. Writers down the line will take care of it.
// Or it's not merge into writes, and we don't validate schema, but we allow to drop columns automatically.
// Or it's not merge into writes, we validate schema, and schema is compatible.
if (shouldValidateSchemasCompatibility) {
checkSchemaCompatible(latestTableSchema, canonicalizedSourceSchema, true,
allowAutoEvolutionColumnDrop, java.util.Collections.emptySet())
}
canonicalizedSourceSchema
}
}
/**
* Deducing with enabled reconciliation.
* Marked as Deprecated.
*/
private def deduceWriterSchemaWithReconcile(sourceSchema: Schema,
canonicalizedSourceSchema: Schema,
latestTableSchema: Schema,
internalSchemaOpt: Option[InternalSchema],
opts: Map[String, String]): Schema = {
internalSchemaOpt match {
case Some(internalSchema) =>
// Apply schema evolution, by auto-merging write schema and read schema
val setNullForMissingColumns = opts.getOrElse(HoodieCommonConfig.SET_NULL_FOR_MISSING_COLUMNS.key(),
HoodieCommonConfig.SET_NULL_FOR_MISSING_COLUMNS.defaultValue()).toBoolean
val mergedInternalSchema = AvroSchemaEvolutionUtils.reconcileSchema(canonicalizedSourceSchema, internalSchema, setNullForMissingColumns)
val evolvedSchema = AvroInternalSchemaConverter.convert(mergedInternalSchema, latestTableSchema.getFullName)
val shouldRemoveMetaDataFromInternalSchema = sourceSchema.getFields().asScala.filter(f => f.name().equalsIgnoreCase(HoodieRecord.RECORD_KEY_METADATA_FIELD)).isEmpty
if (shouldRemoveMetaDataFromInternalSchema) HoodieAvroUtils.removeMetadataFields(evolvedSchema) else evolvedSchema
case None =>
// In case schema reconciliation is enabled we will employ (legacy) reconciliation
// strategy to produce target writer's schema (see definition below)
val (reconciledSchema, isCompatible) =
reconcileSchemasLegacy(latestTableSchema, canonicalizedSourceSchema)
// NOTE: In some cases we need to relax constraint of incoming dataset's schema to be compatible
// w/ the table's one and allow schemas to diverge. This is required in cases where
// partial updates will be performed (for ex, `MERGE INTO` Spark SQL statement) and as such
// only incoming dataset's projection has to match the table's schema, and not the whole one
val shouldValidateSchemasCompatibility = opts.getOrElse(HoodieWriteConfig.AVRO_SCHEMA_VALIDATE_ENABLE.key, HoodieWriteConfig.AVRO_SCHEMA_VALIDATE_ENABLE.defaultValue).toBoolean
if (!shouldValidateSchemasCompatibility || isCompatible) {
reconciledSchema
} else {
log.error(
s"""Failed to reconcile incoming batch schema with the table's one.
|Incoming schema ${sourceSchema.toString(true)}
|Incoming schema (canonicalized) ${canonicalizedSourceSchema.toString(true)}
|Table's schema ${latestTableSchema.toString(true)}
|""".stripMargin)
throw new SchemaCompatibilityException("Failed to reconcile incoming schema with the table's one")
}
}
}
def deduceWriterSchema(sourceSchema: Schema,
latestTableSchemaOpt: org.apache.hudi.common.util.Option[Schema],
internalSchemaOpt: org.apache.hudi.common.util.Option[InternalSchema],
props: TypedProperties): Schema = {
deduceWriterSchema(sourceSchema,
HoodieConversionUtils.toScalaOption(latestTableSchemaOpt),
HoodieConversionUtils.toScalaOption(internalSchemaOpt),
HoodieConversionUtils.fromProperties(props))
}
/**
* Canonicalizes [[sourceSchema]] by reconciling it w/ [[latestTableSchema]] in following
*
*
* - Nullability: making sure that nullability of the fields in the source schema is matching
* that of the latest table's ones
*
*
* TODO support casing reconciliation
*/
private def canonicalizeSchema(sourceSchema: Schema, latestTableSchema: Schema, opts : Map[String, String],
shouldReorderColumns: Boolean): Schema = {
reconcileSchemaRequirements(sourceSchema, latestTableSchema, shouldReorderColumns)
}
private def reconcileSchemasLegacy(tableSchema: Schema, newSchema: Schema): (Schema, Boolean) = {
// Legacy reconciliation implements following semantic
// - In case new-schema is a "compatible" projection of the existing table's one (projection allowing
// permitted type promotions), table's schema would be picked as (reconciled) writer's schema;
// - Otherwise, we'd fall back to picking new (batch's) schema as a writer's schema;
//
// Philosophically, such semantic aims at always choosing a "wider" schema, ie the one containing
// the other one (schema A contains schema B, if schema B is a projection of A). This enables us,
// to always "extend" the schema during schema evolution and hence never lose the data (when, for ex
// existing column is being dropped in a new batch)
//
// NOTE: By default Hudi doesn't allow automatic schema evolution to drop the columns from the target
// table. However, when schema reconciliation is turned on, we would allow columns to be dropped
// in the incoming batch (as these would be reconciled in anyway)
if (isCompatibleProjectionOf(tableSchema, newSchema)) {
// Picking table schema as a writer schema we need to validate that we'd be able to
// rewrite incoming batch's data (written in new schema) into it
(tableSchema, isSchemaCompatible(newSchema, tableSchema))
} else {
// Picking new schema as a writer schema we need to validate that we'd be able to
// rewrite table's data into it
(newSchema, isSchemaCompatible(tableSchema, newSchema))
}
}
/**
* Check if the partition schema fields order matches the table schema fields order.
*
* @param tableSchema The table schema
* @param partitionFields The partition fields
*/
def checkPartitionSchemaOrder(tableSchema: StructType, partitionFields: Seq[String]): Unit = {
val tableSchemaFields = tableSchema.fields.map(_.name)
// It is not allowed to specify partition columns when the table schema is not defined.
// https://spark.apache.org/docs/latest/sql-error-conditions.html#specify_partition_is_not_allowed
if (tableSchemaFields.isEmpty && partitionFields.nonEmpty) {
throw new IllegalArgumentException("It is not allowed to specify partition columns when the table schema is not defined.")
}
// Filter the table schema fields to get the partition field names in order
val tableSchemaPartitionFields = tableSchemaFields.filter(partitionFields.contains).toSeq
if (tableSchemaPartitionFields != partitionFields) {
throw new IllegalArgumentException(s"Partition schema fields order does not match the table schema fields order," +
s" tableSchemaFields: $tableSchemaPartitionFields, partitionFields: $partitionFields.")
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy