org.apache.hudi.cdc.CDCRelation.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hudi.cdc
import org.apache.hudi.{AvroConversionUtils, DataSourceReadOptions, HoodieDataSourceHelper, HoodieTableSchema}
import org.apache.hudi.common.table.{HoodieTableMetaClient, TableSchemaResolver}
import org.apache.hudi.common.table.cdc.HoodieCDCExtractor
import org.apache.hudi.common.table.cdc.HoodieCDCOperation._
import org.apache.hudi.common.table.cdc.HoodieCDCSupplementalLoggingMode._
import org.apache.hudi.common.table.cdc.HoodieCDCUtils._
import org.apache.hudi.common.table.log.InstantRange
import org.apache.hudi.common.table.log.InstantRange.RangeType
import org.apache.hudi.common.table.timeline.{HoodieTimeline, InstantComparison}
import org.apache.hudi.exception.HoodieException
import org.apache.hudi.internal.schema.InternalSchema
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Row, SQLContext, SparkSession}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.sources.{BaseRelation, Filter, PrunedFilteredScan}
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.unsafe.types.UTF8String
import scala.collection.JavaConverters._
import scala.util.{Failure, Success, Try}
/**
* Hoodie CDC Relation extends Spark's [[BaseRelation]], provide the schema of cdc
* and the [[buildScan]] to return the change-data in a specified range.
*/
class CDCRelation(
override val sqlContext: SQLContext,
metaClient: HoodieTableMetaClient,
startInstant: String,
endInstant: String,
options: Map[String, String],
rangeType: RangeType = InstantRange.RangeType.OPEN_CLOSED
) extends BaseRelation with PrunedFilteredScan with Logging {
imbueConfigs(sqlContext)
val spark: SparkSession = sqlContext.sparkSession
val (tableAvroSchema, _) = {
val schemaUtil = new TableSchemaResolver(metaClient)
val avroSchema = Try(schemaUtil.getTableAvroSchema) match {
case Success(schema) => schema
case Failure(e) =>
throw new IllegalArgumentException("Failed to fetch schema from the table", e)
}
// try to find internalSchema
val internalSchemaFromMeta = try {
schemaUtil.getTableInternalSchemaFromCommitMetadata.orElse(InternalSchema.getEmptyInternalSchema)
} catch {
case _: Exception => InternalSchema.getEmptyInternalSchema
}
(avroSchema, internalSchemaFromMeta)
}
val tableStructSchema: StructType = AvroConversionUtils.convertAvroSchemaToStructType(tableAvroSchema)
val cdcExtractor: HoodieCDCExtractor =
new HoodieCDCExtractor(
metaClient,
InstantRange.builder()
.startInstant(startInstant)
.endInstant(endInstant)
.nullableBoundary(true)
.rangeType(rangeType).build(),
false)
override final def needConversion: Boolean = false
override def schema: StructType = CDCRelation.FULL_CDC_SPARK_SCHEMA
override def buildScan(requiredColumns: Array[String], filters: Array[Filter]): RDD[Row] = {
val internalRows = buildScan0(requiredColumns, filters)
internalRows.asInstanceOf[RDD[Row]]
}
def buildScan0(requiredColumns: Array[String], filters: Array[Filter]): RDD[InternalRow] = {
val nameToField = schema.fields.map(f => f.name -> f).toMap
val requiredSchema = StructType(requiredColumns.map(nameToField))
val originTableSchema = HoodieTableSchema(tableStructSchema, tableAvroSchema.toString)
val parquetReader = HoodieDataSourceHelper.buildHoodieParquetReader(
sparkSession = spark,
dataSchema = tableStructSchema,
partitionSchema = StructType(Nil),
requiredSchema = tableStructSchema,
filters = Nil,
options = options,
hadoopConf = spark.sessionState.newHadoopConf()
)
val changes = cdcExtractor.extractCDCFileSplits().values().asScala.map { splits =>
HoodieCDCFileGroupSplit(
splits.asScala.sorted.toArray
)
}
val cdcRdd = new HoodieCDCRDD(
spark,
metaClient,
parquetReader,
originTableSchema,
schema,
requiredSchema,
changes.toArray
)
cdcRdd.asInstanceOf[RDD[InternalRow]]
}
def imbueConfigs(sqlContext: SQLContext): Unit = {
// Disable vectorized reading for CDC relation
sqlContext.sparkSession.sessionState.conf.setConfString("spark.sql.parquet.enableVectorizedReader", "false")
}
}
object CDCRelation {
val CDC_OPERATION_DELETE: UTF8String = UTF8String.fromString(DELETE.getValue)
val CDC_OPERATION_INSERT: UTF8String = UTF8String.fromString(INSERT.getValue)
val CDC_OPERATION_UPDATE: UTF8String = UTF8String.fromString(UPDATE.getValue)
/**
* CDC Schema For Spark.
* Also it's schema when `hoodie.table.cdc.supplemental.logging.mode` is [[DATA_BEFORE_AFTER]].
* Here we use the debezium format.
*/
val FULL_CDC_SPARK_SCHEMA: StructType = {
StructType(
Seq(
StructField(CDC_OPERATION_TYPE, StringType),
StructField(CDC_COMMIT_TIMESTAMP, StringType),
StructField(CDC_BEFORE_IMAGE, StringType),
StructField(CDC_AFTER_IMAGE, StringType)
)
)
}
/**
* CDC Schema For Spark when `hoodie.table.cdc.supplemental.logging.mode` is [[OP_KEY_ONLY]].
*/
val MIN_CDC_SPARK_SCHEMA: StructType = {
StructType(
Seq(
StructField(CDC_OPERATION_TYPE, StringType),
StructField(CDC_RECORD_KEY, StringType)
)
)
}
/**
* CDC Schema For Spark when `hoodie.table.cdc.supplemental.logging.mode` is [[DATA_BEFORE]].
*/
val CDC_WITH_BEFORE_SPARK_SCHEMA: StructType = {
StructType(
Seq(
StructField(CDC_OPERATION_TYPE, StringType),
StructField(CDC_RECORD_KEY, StringType),
StructField(CDC_BEFORE_IMAGE, StringType)
)
)
}
def isCDCEnabled(metaClient: HoodieTableMetaClient): Boolean = {
metaClient.getTableConfig.isCDCEnabled
}
/**
* The only approach to create the CDC relation.
*/
def getCDCRelation(
sqlContext: SQLContext,
metaClient: HoodieTableMetaClient,
options: Map[String, String],
rangeType: RangeType = RangeType.OPEN_CLOSED): CDCRelation = {
if (!isCDCEnabled(metaClient)) {
throw new IllegalArgumentException(s"It isn't a CDC hudi table on ${metaClient.getBasePath}")
}
val startCompletionTime = options.getOrElse(DataSourceReadOptions.START_COMMIT.key(),
throw new HoodieException(s"CDC Query should provide the valid start completion time "
+ s"through the option ${DataSourceReadOptions.START_COMMIT.key()}")
)
val endCompletionTime = options.getOrElse(DataSourceReadOptions.END_COMMIT.key(),
getTimestampOfLatestInstant(metaClient)
)
new CDCRelation(sqlContext, metaClient, startCompletionTime, endCompletionTime, options, rangeType)
}
def getTimestampOfLatestInstant(metaClient: HoodieTableMetaClient): String = {
val latestInstant = metaClient.getActiveTimeline.lastInstant()
if (latestInstant.isPresent) {
latestInstant.get().requestedTime
} else {
throw new HoodieException("No valid instant in Active Timeline.")
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy