org.apache.hudi.AvroConversionUtils.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hudi
import com.databricks.spark.avro.SchemaConverters
import org.apache.avro.generic.GenericRecord
import org.apache.avro.{Schema, SchemaBuilder}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
object AvroConversionUtils {
def createRdd(df: DataFrame, structName: String, recordNamespace: String): RDD[GenericRecord] = {
val dataType = df.schema
val encoder = RowEncoder.apply(dataType).resolveAndBind()
df.queryExecution.toRdd.map(encoder.fromRow)
.mapPartitions { records =>
if (records.isEmpty) Iterator.empty
else {
val convertor = AvroConversionHelper.createConverterToAvro(dataType, structName, recordNamespace)
records.map { x => convertor(x).asInstanceOf[GenericRecord] }
}
}
}
def createDataFrame(rdd: RDD[GenericRecord], schemaStr: String, ss: SparkSession): Dataset[Row] = {
if (rdd.isEmpty()) {
ss.emptyDataFrame
} else {
ss.createDataFrame(rdd.mapPartitions { records =>
if (records.isEmpty) Iterator.empty
else {
val schema = Schema.parse(schemaStr)
val dataType = convertAvroSchemaToStructType(schema)
val convertor = AvroConversionHelper.createConverterToRow(schema, dataType)
records.map { x => convertor(x).asInstanceOf[Row] }
}
}, convertAvroSchemaToStructType(Schema.parse(schemaStr))).asInstanceOf[Dataset[Row]]
}
}
def getNewRecordNamespace(elementDataType: DataType,
currentRecordNamespace: String,
elementName: String): String = {
elementDataType match {
case StructType(_) => s"$currentRecordNamespace.$elementName"
case _ => currentRecordNamespace
}
}
def convertStructTypeToAvroSchema(structType: StructType,
structName: String,
recordNamespace: String): Schema = {
val builder = SchemaBuilder.record(structName).namespace(recordNamespace)
SchemaConverters.convertStructToAvro(structType, builder, recordNamespace)
}
def convertAvroSchemaToStructType(avroSchema: Schema): StructType = {
SchemaConverters.toSqlType(avroSchema).dataType.asInstanceOf[StructType];
}
}