org.apache.hudi.client.utils.SparkMetadataWriterUtils Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.hudi.client.utils;
import org.apache.hudi.SparkAdapterSupport$;
import org.apache.hudi.client.common.HoodieSparkEngineContext;
import org.apache.hudi.common.bloom.BloomFilter;
import org.apache.hudi.common.model.FileSlice;
import org.apache.hudi.common.model.HoodieBaseFile;
import org.apache.hudi.common.model.HoodieColumnRangeMetadata;
import org.apache.hudi.common.model.HoodieRecord;
import org.apache.hudi.common.table.HoodieTableMetaClient;
import org.apache.hudi.config.HoodieWriteConfig;
import org.apache.hudi.data.HoodieJavaRDD;
import org.apache.hudi.index.functional.HoodieFunctionalIndex;
import org.apache.hudi.io.storage.HoodieFileWriterFactory;
import org.apache.hudi.storage.StoragePath;
import org.apache.avro.Schema;
import org.apache.hadoop.fs.Path;
import org.apache.spark.sql.Column;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.functions;
import org.apache.spark.sql.sources.BaseRelation;
import javax.annotation.Nullable;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.stream.Collectors;
import static org.apache.hudi.common.model.HoodieRecord.HOODIE_META_COLUMNS;
import static org.apache.hudi.common.util.StringUtils.getUTF8Bytes;
import static org.apache.hudi.hadoop.fs.HadoopFSUtils.convertToStoragePath;
import static org.apache.hudi.metadata.HoodieMetadataPayload.createBloomFilterMetadataRecord;
import static org.apache.hudi.metadata.HoodieMetadataPayload.createColumnStatsRecords;
/**
* Utility methods for writing metadata for functional index.
*/
public class SparkMetadataWriterUtils {
/**
* Configs required to load records from paths as a dataframe
*/
private static final String QUERY_TYPE_CONFIG = "hoodie.datasource.query.type";
private static final String QUERY_TYPE_SNAPSHOT = "snapshot";
private static final String READ_PATHS_CONFIG = "hoodie.datasource.read.paths";
private static final String GLOB_PATHS_CONFIG = "glob.paths";
public static HoodieJavaRDD getFunctionalIndexRecordsUsingColumnStats(
HoodieTableMetaClient metaClient,
int parallelism,
Schema readerSchema,
FileSlice fileSlice,
String basePath,
String partition,
HoodieFunctionalIndex functionalIndex,
String columnToIndex,
SQLContext sqlContext,
HoodieSparkEngineContext sparkEngineContext) {
List> columnRangeMetadataList = new ArrayList<>();
if (fileSlice.getBaseFile().isPresent()) {
HoodieBaseFile baseFile = fileSlice.getBaseFile().get();
String filename = baseFile.getFileName();
long fileSize = baseFile.getFileSize();
Path baseFilePath = filePath(basePath, partition, filename);
buildColumnRangeMetadata(metaClient, readerSchema, functionalIndex, columnToIndex, sqlContext, columnRangeMetadataList, fileSize, baseFilePath);
}
// Handle log files
fileSlice.getLogFiles().forEach(logFile -> {
String fileName = logFile.getFileName();
Path logFilePath = filePath(basePath, partition, fileName);
long fileSize = logFile.getFileSize();
buildColumnRangeMetadata(metaClient, readerSchema, functionalIndex, columnToIndex, sqlContext, columnRangeMetadataList, fileSize, logFilePath);
});
return HoodieJavaRDD.of(createColumnStatsRecords(partition, columnRangeMetadataList, false).collect(Collectors.toList()), sparkEngineContext, parallelism);
}
public static HoodieJavaRDD getFunctionalIndexRecordsUsingBloomFilter(
HoodieTableMetaClient metaClient,
int parallelism,
Schema readerSchema,
FileSlice fileSlice,
String basePath,
String partition,
HoodieFunctionalIndex functionalIndex,
String columnToIndex,
SQLContext sqlContext,
HoodieSparkEngineContext sparkEngineContext,
HoodieWriteConfig metadataWriteConfig) {
List bloomFilterMetadataList = new ArrayList<>();
if (fileSlice.getBaseFile().isPresent()) {
HoodieBaseFile baseFile = fileSlice.getBaseFile().get();
String filename = baseFile.getFileName();
Path baseFilePath = filePath(basePath, partition, filename);
buildBloomFilterMetadata(
metaClient,
readerSchema,
functionalIndex,
columnToIndex,
sqlContext,
bloomFilterMetadataList,
baseFilePath,
metadataWriteConfig,
partition,
baseFile.getCommitTime());
}
// Handle log files
fileSlice.getLogFiles().forEach(logFile -> {
String fileName = logFile.getFileName();
Path logFilePath = filePath(basePath, partition, fileName);
buildBloomFilterMetadata(
metaClient,
readerSchema,
functionalIndex,
columnToIndex,
sqlContext,
bloomFilterMetadataList,
logFilePath,
metadataWriteConfig,
partition,
logFile.getDeltaCommitTime());
});
return HoodieJavaRDD.of(bloomFilterMetadataList, sparkEngineContext, parallelism);
}
private static void buildColumnRangeMetadata(
HoodieTableMetaClient metaClient,
Schema readerSchema,
HoodieFunctionalIndex functionalIndex,
String columnToIndex,
SQLContext sqlContext,
List> columnRangeMetadataList,
long fileSize,
Path filePath) {
Dataset fileDf = readRecordsAsRow(
new StoragePath[] {convertToStoragePath(filePath)},
sqlContext,
metaClient,
readerSchema);
Column indexedColumn = functionalIndex.apply(Arrays.asList(fileDf.col(columnToIndex)));
fileDf = fileDf.withColumn(columnToIndex, indexedColumn);
HoodieColumnRangeMetadata columnRangeMetadata =
computeColumnRangeMetadata(fileDf, columnToIndex, filePath.toString(), fileSize);
columnRangeMetadataList.add(columnRangeMetadata);
}
private static void buildBloomFilterMetadata(
HoodieTableMetaClient metaClient,
Schema readerSchema,
HoodieFunctionalIndex functionalIndex,
String columnToIndex,
SQLContext sqlContext,
List bloomFilterMetadataList,
Path filePath,
HoodieWriteConfig writeConfig,
String partitionName,
String instantTime) {
Dataset fileDf =
readRecordsAsRow(new StoragePath[] {convertToStoragePath(filePath)},
sqlContext, metaClient, readerSchema);
Column indexedColumn = functionalIndex.apply(Arrays.asList(fileDf.col(columnToIndex)));
fileDf = fileDf.withColumn(columnToIndex, indexedColumn);
BloomFilter bloomFilter = HoodieFileWriterFactory.createBloomFilter(writeConfig);
fileDf.foreach(row -> {
byte[] key = row.getAs(columnToIndex).toString().getBytes();
bloomFilter.add(key);
});
ByteBuffer bloomByteBuffer = ByteBuffer.wrap(getUTF8Bytes(bloomFilter.serializeToString()));
bloomFilterMetadataList.add(createBloomFilterMetadataRecord(
partitionName, filePath.toString(), instantTime, writeConfig.getBloomFilterType(),
bloomByteBuffer, false));
}
private static Dataset readRecordsAsRow(StoragePath[] paths, SQLContext sqlContext,
HoodieTableMetaClient metaClient, Schema schema) {
String readPathString =
String.join(",", Arrays.stream(paths).map(StoragePath::toString).toArray(String[]::new));
String globPathString = String.join(",", Arrays.stream(paths).map(StoragePath::getParent).map(StoragePath::toString).distinct().toArray(String[]::new));
HashMap params = new HashMap<>();
params.put(QUERY_TYPE_CONFIG, QUERY_TYPE_SNAPSHOT);
params.put(READ_PATHS_CONFIG, readPathString);
// Building HoodieFileIndex needs this param to decide query path
params.put(GLOB_PATHS_CONFIG, globPathString);
// Let Hudi relations to fetch the schema from the table itself
BaseRelation relation = SparkAdapterSupport$.MODULE$.sparkAdapter()
.createRelation(sqlContext, metaClient, schema, paths, params);
return dropMetaFields(sqlContext.baseRelationToDataFrame(relation));
}
private static > HoodieColumnRangeMetadata computeColumnRangeMetadata(Dataset rowDataset,
String columnName,
String filePath,
long fileSize) {
long totalSize = fileSize;
// Get nullCount, minValue, and maxValue
Dataset aggregated = rowDataset.agg(
functions.count(functions.when(functions.col(columnName).isNull(), 1)).alias("nullCount"),
functions.min(columnName).alias("minValue"),
functions.max(columnName).alias("maxValue"),
functions.count(columnName).alias("valueCount")
);
Row result = aggregated.collectAsList().get(0);
long nullCount = result.getLong(0);
@Nullable T minValue = (T) result.get(1);
@Nullable T maxValue = (T) result.get(2);
long valueCount = result.getLong(3);
// Total uncompressed size is harder to get directly. This is just an approximation to maintain the order.
long totalUncompressedSize = totalSize * 2;
return HoodieColumnRangeMetadata.create(
filePath,
columnName,
minValue,
maxValue,
nullCount,
valueCount,
totalSize,
totalUncompressedSize
);
}
private static Dataset dropMetaFields(Dataset df) {
return df.select(
Arrays.stream(df.columns())
.filter(c -> !HOODIE_META_COLUMNS.contains(c))
.map(df::col).toArray(Column[]::new));
}
private static Path filePath(String basePath, String partition, String filename) {
if (partition.isEmpty()) {
return new Path(basePath, filename);
} else {
return new Path(basePath, partition + StoragePath.SEPARATOR + filename);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy