org.apache.hudi.HoodieBootstrapRDD.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hudi
import org.apache.spark.{Partition, TaskContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.execution.datasources.PartitionedFile
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.vectorized.ColumnarBatch
class HoodieBootstrapRDD(@transient spark: SparkSession,
dataReadFunction: PartitionedFile => Iterator[Any],
skeletonReadFunction: PartitionedFile => Iterator[Any],
regularReadFunction: PartitionedFile => Iterator[Any],
dataSchema: StructType,
skeletonSchema: StructType,
requiredColumns: Array[String],
tableState: HoodieBootstrapTableState)
extends RDD[InternalRow](spark.sparkContext, Nil) {
override def compute(split: Partition, context: TaskContext): Iterator[InternalRow] = {
val bootstrapPartition = split.asInstanceOf[HoodieBootstrapPartition]
if (log.isDebugEnabled) {
if (bootstrapPartition.split.skeletonFile.isDefined) {
logDebug("Got Split => Index: " + bootstrapPartition.index + ", Data File: "
+ bootstrapPartition.split.dataFile.filePath + ", Skeleton File: "
+ bootstrapPartition.split.skeletonFile.get.filePath)
} else {
logDebug("Got Split => Index: " + bootstrapPartition.index + ", Data File: "
+ bootstrapPartition.split.dataFile.filePath)
}
}
var partitionedFileIterator: Iterator[InternalRow] = null
if (bootstrapPartition.split.skeletonFile.isDefined) {
// It is a bootstrap split. Check both skeleton and data files.
if (dataSchema.isEmpty) {
// No data column to fetch, hence fetch only from skeleton file
partitionedFileIterator = read(bootstrapPartition.split.skeletonFile.get, skeletonReadFunction)
} else if (skeletonSchema.isEmpty) {
// No metadata column to fetch, hence fetch only from data file
partitionedFileIterator = read(bootstrapPartition.split.dataFile, dataReadFunction)
} else {
// Fetch from both data and skeleton file, and merge
val dataFileIterator = read(bootstrapPartition.split.dataFile, dataReadFunction)
val skeletonFileIterator = read(bootstrapPartition.split.skeletonFile.get, skeletonReadFunction)
partitionedFileIterator = merge(skeletonFileIterator, dataFileIterator)
}
} else {
partitionedFileIterator = read(bootstrapPartition.split.dataFile, regularReadFunction)
}
partitionedFileIterator
}
def merge(skeletonFileIterator: Iterator[InternalRow], dataFileIterator: Iterator[InternalRow])
: Iterator[InternalRow] = {
new Iterator[InternalRow] {
override def hasNext: Boolean = dataFileIterator.hasNext && skeletonFileIterator.hasNext
override def next(): InternalRow = {
mergeInternalRow(skeletonFileIterator.next(), dataFileIterator.next())
}
}
}
def mergeInternalRow(skeletonRow: InternalRow, dataRow: InternalRow): InternalRow = {
val skeletonArr = skeletonRow.copy().toSeq(skeletonSchema)
val dataArr = dataRow.copy().toSeq(dataSchema)
// We need to return it in the order requested
val mergedArr = requiredColumns.map(col => {
if (skeletonSchema.fieldNames.contains(col)) {
val idx = skeletonSchema.fieldIndex(col)
skeletonArr(idx)
} else {
val idx = dataSchema.fieldIndex(col)
dataArr(idx)
}
})
logDebug("Merged data and skeleton values => " + mergedArr.mkString(","))
val mergedRow = InternalRow.fromSeq(mergedArr)
mergedRow
}
def read(partitionedFile: PartitionedFile, readFileFunction: PartitionedFile => Iterator[Any])
: Iterator[InternalRow] = {
val fileIterator = readFileFunction(partitionedFile)
import scala.collection.JavaConverters._
val rows = fileIterator.flatMap(_ match {
case r: InternalRow => Seq(r)
case b: ColumnarBatch => b.rowIterator().asScala
})
rows
}
override protected def getPartitions: Array[Partition] = {
tableState.files.zipWithIndex.map(file => {
if (file._1.skeletonFile.isDefined) {
logDebug("Forming partition with => Index: " + file._2 + ", Files: " + file._1.dataFile.filePath
+ "," + file._1.skeletonFile.get.filePath)
HoodieBootstrapPartition(file._2, file._1)
} else {
logDebug("Forming partition with => Index: " + file._2 + ", File: " + file._1.dataFile.filePath)
HoodieBootstrapPartition(file._2, file._1)
}
}).toArray
}
}
case class HoodieBootstrapPartition(index: Int, split: HoodieBootstrapSplit) extends Partition
© 2015 - 2025 Weber Informatics LLC | Privacy Policy