org.apache.hudi.QuickstartUtils Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hudi;
import org.apache.hudi.common.model.HoodieAvroRecord;
import org.apache.hudi.common.model.HoodieKey;
import org.apache.hudi.common.model.HoodieRecord;
import org.apache.hudi.common.model.OverwriteWithLatestAvroPayload;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.exception.HoodieException;
import org.apache.hudi.exception.HoodieIOException;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.spark.sql.Row;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.UUID;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.stream.Stream;
/**
* Class to be used in quickstart guide for generating inserts and updates against a corpus. Test data uses a toy Uber
* trips, data model.
*/
public class QuickstartUtils {
public static class DataGenerator {
private static final String DEFAULT_FIRST_PARTITION_PATH = "americas/united_states/san_francisco";
private static final String DEFAULT_SECOND_PARTITION_PATH = "americas/brazil/sao_paulo";
private static final String DEFAULT_THIRD_PARTITION_PATH = "asia/india/chennai";
private static final String[] DEFAULT_PARTITION_PATHS =
{DEFAULT_FIRST_PARTITION_PATH, DEFAULT_SECOND_PARTITION_PATH, DEFAULT_THIRD_PARTITION_PATH};
static String TRIP_EXAMPLE_SCHEMA = "{\"type\": \"record\",\"name\": \"triprec\",\"fields\": [ "
+ "{\"name\": \"ts\",\"type\": \"long\"},{\"name\": \"uuid\", \"type\": \"string\"},"
+ "{\"name\": \"rider\", \"type\": \"string\"},{\"name\": \"driver\", \"type\": \"string\"},"
+ "{\"name\": \"begin_lat\", \"type\": \"double\"},{\"name\": \"begin_lon\", \"type\": \"double\"},"
+ "{\"name\": \"end_lat\", \"type\": \"double\"},{\"name\": \"end_lon\", \"type\": \"double\"},"
+ "{\"name\":\"fare\",\"type\": \"double\"}]}";
static Schema avroSchema = new Schema.Parser().parse(TRIP_EXAMPLE_SCHEMA);
private static Random rand = new Random(46474747);
private final Map existingKeys;
private final String[] partitionPaths;
private int numExistingKeys;
public DataGenerator() {
this(DEFAULT_PARTITION_PATHS, new HashMap<>());
}
public DataGenerator(String[] partitionPaths) {
this(partitionPaths, new HashMap<>());
}
private DataGenerator(String[] partitionPaths, Map keyPartitionMap) {
this.partitionPaths = Arrays.copyOf(partitionPaths, partitionPaths.length);
this.existingKeys = keyPartitionMap;
}
private static String generateRandomString() {
int leftLimit = 48; // ascii for 0
int rightLimit = 57; // ascii for 9
int stringLength = 3;
StringBuilder buffer = new StringBuilder(stringLength);
for (int i = 0; i < stringLength; i++) {
int randomLimitedInt = leftLimit + (int) (rand.nextFloat() * (rightLimit - leftLimit + 1));
buffer.append((char) randomLimitedInt);
}
return buffer.toString();
}
public int getNumExistingKeys() {
return numExistingKeys;
}
public static GenericRecord generateGenericRecord(String rowKey, String riderName, String driverName,
long timestamp) {
GenericRecord rec = new GenericData.Record(avroSchema);
rec.put("uuid", rowKey);
rec.put("ts", timestamp);
rec.put("rider", riderName);
rec.put("driver", driverName);
rec.put("begin_lat", rand.nextDouble());
rec.put("begin_lon", rand.nextDouble());
rec.put("end_lat", rand.nextDouble());
rec.put("end_lon", rand.nextDouble());
rec.put("fare", rand.nextDouble() * 100);
return rec;
}
/**
* Generates a new avro record of the above schema format, retaining the key if optionally provided. The
* riderDriverSuffix string is a random String to simulate updates by changing the rider driver fields for records
* belonging to the same commit. It is purely used for demo purposes. In real world, the actual updates are assumed
* to be provided based on the application requirements.
*/
public static OverwriteWithLatestAvroPayload generateRandomValue(HoodieKey key, String riderDriverSuffix)
throws IOException {
// The timestamp generated is limited to range from 7 days before to now, to avoid generating too many
// partitionPaths when user use timestamp as partitionPath filed.
GenericRecord rec =
generateGenericRecord(key.getRecordKey(), "rider-" + riderDriverSuffix, "driver-"
+ riderDriverSuffix, generateRangeRandomTimestamp(7));
return new OverwriteWithLatestAvroPayload(Option.of(rec));
}
/**
* Generate timestamp range from {@param daysTillNow} before to now.
*/
private static long generateRangeRandomTimestamp(int daysTillNow) {
long maxIntervalMillis = daysTillNow * 24 * 60 * 60 * 1000L;
return System.currentTimeMillis() - (long) (Math.random() * maxIntervalMillis);
}
/**
* Generates new inserts, uniformly across the partition paths above. It also updates the list of existing keys.
*/
public Stream generateInsertsStream(String randomString, Integer n) {
int currSize = getNumExistingKeys();
return IntStream.range(0, n).boxed().map(i -> {
String partitionPath = partitionPaths[rand.nextInt(partitionPaths.length)];
HoodieKey key = new HoodieKey(UUID.randomUUID().toString(), partitionPath);
existingKeys.put(currSize + i, key);
numExistingKeys++;
try {
return new HoodieAvroRecord(key, generateRandomValue(key, randomString));
} catch (IOException e) {
throw new HoodieIOException(e.getMessage(), e);
}
});
}
/**
* Generates new inserts, uniformly across the partition paths above. It also updates the list of existing keys.
*/
public List generateInserts(Integer n) throws IOException {
String randomString = generateRandomString();
return generateInsertsStream(randomString, n).collect(Collectors.toList());
}
public HoodieRecord generateUpdateRecord(HoodieKey key, String randomString) throws IOException {
return new HoodieAvroRecord(key, generateRandomValue(key, randomString));
}
/**
* Generates new updates, randomly distributed across the keys above. There can be duplicates within the returned
* list
*
* @param n Number of updates (including dups)
* @return list of hoodie record updates
*/
public List generateUpdates(Integer n) {
if (numExistingKeys == 0) {
throw new HoodieException("Data must have been written before performing the update operation");
}
String randomString = generateRandomString();
return IntStream.range(0, n).boxed().map(x -> {
try {
return generateUpdateRecord(existingKeys.get(rand.nextInt(numExistingKeys)), randomString);
} catch (IOException e) {
throw new HoodieIOException(e.getMessage(), e);
}
}).collect(Collectors.toList());
}
/**
* Generates new updates, one for each of the keys above
* list
*
* @param n Number of updates (must be no more than number of existing keys)
* @return list of hoodie record updates
*/
public List generateUniqueUpdates(Integer n) {
if (numExistingKeys < n) {
throw new HoodieException("Data must have been written before performing the update operation");
}
List keys = IntStream.range(0, numExistingKeys).boxed()
.collect(Collectors.toCollection(ArrayList::new));
Collections.shuffle(keys);
String randomString = generateRandomString();
return IntStream.range(0, n).boxed().map(x -> {
try {
return generateUpdateRecord(existingKeys.get(keys.get(x)), randomString);
} catch (IOException e) {
throw new HoodieIOException(e.getMessage(), e);
}
}).collect(Collectors.toList());
}
/**
* Generates delete records for the passed in rows.
*
* @param rows List of {@link Row}s for which delete record need to be generated
* @return list of hoodie records to delete
*/
public List generateDeletes(List rows) {
// if row.length() == 2, then the record contains "uuid" and "partitionpath" fields, otherwise,
// another field "ts" is available
return rows.stream().map(row -> row.length() == 2
? convertToString(row.getAs("uuid"), row.getAs("partitionpath"), null) :
convertToString(row.getAs("uuid"), row.getAs("partitionpath"), row.getAs("ts"))
).filter(os -> os.isPresent()).map(os -> os.get())
.collect(Collectors.toList());
}
public void close() {
existingKeys.clear();
}
}
private static Option convertToString(HoodieRecord record) {
try {
String str = ((OverwriteWithLatestAvroPayload) record.getData())
.getInsertValue(DataGenerator.avroSchema)
.toString();
str = "{" + str.substring(str.indexOf("\"ts\":"));
return Option.of(str.replaceAll("}", ", \"partitionpath\": \"" + record.getPartitionPath() + "\"}"));
} catch (IOException e) {
return Option.empty();
}
}
private static Option convertToString(String uuid, String partitionPath, Long ts) {
StringBuffer stringBuffer = new StringBuffer();
stringBuffer.append("{");
stringBuffer.append("\"ts\": \"" + (ts == null ? "0.0" : ts) + "\",");
stringBuffer.append("\"uuid\": \"" + uuid + "\",");
stringBuffer.append("\"partitionpath\": \"" + partitionPath + "\"");
stringBuffer.append("}");
return Option.of(stringBuffer.toString());
}
public static List convertToStringList(List records) {
return records.stream().map(hr -> convertToString(hr)).filter(os -> os.isPresent()).map(os -> os.get())
.collect(Collectors.toList());
}
public static Map getQuickstartWriteConfigs() {
Map demoConfigs = new HashMap<>();
demoConfigs.put("hoodie.insert.shuffle.parallelism", "2");
demoConfigs.put("hoodie.upsert.shuffle.parallelism", "2");
demoConfigs.put("hoodie.bulkinsert.shuffle.parallelism", "2");
demoConfigs.put("hoodie.delete.shuffle.parallelism", "2");
return demoConfigs;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy