org.apache.spark.sql.avro.AvroDeserializer.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.avro
import org.apache.avro.Conversions.DecimalConversion
import org.apache.avro.LogicalTypes.{LocalTimestampMicros, LocalTimestampMillis, TimestampMicros, TimestampMillis}
import org.apache.avro.Schema.Type._
import org.apache.avro.generic._
import org.apache.avro.util.Utf8
import org.apache.avro.{LogicalTypes, Schema, SchemaBuilder}
import org.apache.spark.sql.avro.AvroDeserializer.{RebaseSpec, createDateRebaseFuncInRead, createTimestampRebaseFuncInRead}
import org.apache.spark.sql.avro.AvroUtils.{AvroMatchedField, toFieldStr}
import org.apache.spark.sql.catalyst.expressions.{SpecificInternalRow, UnsafeArrayData}
import org.apache.spark.sql.catalyst.util.DateTimeConstants.MILLIS_PER_DAY
import org.apache.spark.sql.catalyst.util.{ArrayBasedMapData, ArrayData, DateTimeUtils, GenericArrayData, RebaseDateTime}
import org.apache.spark.sql.catalyst.{InternalRow, NoopFilters, StructFilters}
import org.apache.spark.sql.execution.datasources.DataSourceUtils
import org.apache.spark.sql.internal.SQLConf.LegacyBehaviorPolicy
import org.apache.spark.sql.types._
import org.apache.spark.unsafe.types.UTF8String
import java.math.BigDecimal
import java.nio.ByteBuffer
import java.util.TimeZone
import scala.collection.JavaConverters._
/**
* A deserializer to deserialize data in avro format to data in catalyst format.
*
* NOTE: This code is borrowed from Spark 3.3.0
* This code is borrowed, so that we can better control compatibility w/in Spark minor
* branches (3.2.x, 3.1.x, etc)
*
* PLEASE REFRAIN MAKING ANY CHANGES TO THIS CODE UNLESS ABSOLUTELY NECESSARY
*/
private[sql] class AvroDeserializer(rootAvroType: Schema,
rootCatalystType: DataType,
positionalFieldMatch: Boolean,
datetimeRebaseSpec: RebaseSpec,
filters: StructFilters) {
def this(rootAvroType: Schema,
rootCatalystType: DataType,
datetimeRebaseMode: String) = {
this(
rootAvroType,
rootCatalystType,
positionalFieldMatch = false,
RebaseSpec(LegacyBehaviorPolicy.withName(datetimeRebaseMode)),
new NoopFilters)
}
private lazy val decimalConversions = new DecimalConversion()
private val dateRebaseFunc = createDateRebaseFuncInRead(datetimeRebaseSpec.mode, "Avro")
private val timestampRebaseFunc = createTimestampRebaseFuncInRead(datetimeRebaseSpec, "Avro")
private val converter: Any => Option[Any] = try {
rootCatalystType match {
// A shortcut for empty schema.
case st: StructType if st.isEmpty =>
(_: Any) => Some(InternalRow.empty)
case st: StructType =>
val resultRow = new SpecificInternalRow(st.map(_.dataType))
val fieldUpdater = new RowUpdater(resultRow)
val applyFilters = filters.skipRow(resultRow, _)
val writer = getRecordWriter(rootAvroType, st, Nil, Nil, applyFilters)
(data: Any) => {
val record = data.asInstanceOf[GenericRecord]
val skipRow = writer(fieldUpdater, record)
if (skipRow) None else Some(resultRow)
}
case _ =>
val tmpRow = new SpecificInternalRow(Seq(rootCatalystType))
val fieldUpdater = new RowUpdater(tmpRow)
val writer = newWriter(rootAvroType, rootCatalystType, Nil, Nil)
(data: Any) => {
writer(fieldUpdater, 0, data)
Some(tmpRow.get(0, rootCatalystType))
}
}
} catch {
case ise: IncompatibleSchemaException => throw new IncompatibleSchemaException(
s"Cannot convert Avro type $rootAvroType to SQL type ${rootCatalystType.sql}.", ise)
}
def deserialize(data: Any): Option[Any] = converter(data)
/**
* Creates a writer to write avro values to Catalyst values at the given ordinal with the given
* updater.
*/
private def newWriter(avroType: Schema,
catalystType: DataType,
avroPath: Seq[String],
catalystPath: Seq[String]): (CatalystDataUpdater, Int, Any) => Unit = {
val errorPrefix = s"Cannot convert Avro ${toFieldStr(avroPath)} to " +
s"SQL ${toFieldStr(catalystPath)} because "
val incompatibleMsg = errorPrefix +
s"schema is incompatible (avroType = $avroType, sqlType = ${catalystType.sql})"
(avroType.getType, catalystType) match {
case (NULL, NullType) => (updater, ordinal, _) =>
updater.setNullAt(ordinal)
// TODO: we can avoid boxing if future version of avro provide primitive accessors.
case (BOOLEAN, BooleanType) => (updater, ordinal, value) =>
updater.setBoolean(ordinal, value.asInstanceOf[Boolean])
case (INT, IntegerType) => (updater, ordinal, value) =>
updater.setInt(ordinal, value.asInstanceOf[Int])
case (INT, DateType) => (updater, ordinal, value) =>
updater.setInt(ordinal, dateRebaseFunc(value.asInstanceOf[Int]))
case (LONG, LongType) => (updater, ordinal, value) =>
updater.setLong(ordinal, value.asInstanceOf[Long])
case (LONG, TimestampType) => avroType.getLogicalType match {
// For backward compatibility, if the Avro type is Long and it is not logical type
// (the `null` case), the value is processed as timestamp type with millisecond precision.
case null | _: TimestampMillis => (updater, ordinal, value) =>
val millis = value.asInstanceOf[Long]
val micros = DateTimeUtils.millisToMicros(millis)
updater.setLong(ordinal, timestampRebaseFunc(micros))
case _: TimestampMicros => (updater, ordinal, value) =>
val micros = value.asInstanceOf[Long]
updater.setLong(ordinal, timestampRebaseFunc(micros))
case other => throw new IncompatibleSchemaException(errorPrefix +
s"Avro logical type $other cannot be converted to SQL type ${TimestampType.sql}.")
}
case (LONG, TimestampNTZType) => avroType.getLogicalType match {
// To keep consistent with TimestampType, if the Avro type is Long and it is not
// logical type (the `null` case), the value is processed as TimestampNTZ
// with millisecond precision.
case null | _: LocalTimestampMillis => (updater, ordinal, value) =>
val millis = value.asInstanceOf[Long]
val micros = DateTimeUtils.millisToMicros(millis)
updater.setLong(ordinal, micros)
case _: LocalTimestampMicros => (updater, ordinal, value) =>
val micros = value.asInstanceOf[Long]
updater.setLong(ordinal, micros)
case other => throw new IncompatibleSchemaException(errorPrefix +
s"Avro logical type $other cannot be converted to SQL type ${TimestampNTZType.sql}.")
}
// Before we upgrade Avro to 1.8 for logical type support, spark-avro converts Long to Date.
// For backward compatibility, we still keep this conversion.
case (LONG, DateType) => (updater, ordinal, value) =>
updater.setInt(ordinal, (value.asInstanceOf[Long] / MILLIS_PER_DAY).toInt)
case (FLOAT, FloatType) => (updater, ordinal, value) =>
updater.setFloat(ordinal, value.asInstanceOf[Float])
case (DOUBLE, DoubleType) => (updater, ordinal, value) =>
updater.setDouble(ordinal, value.asInstanceOf[Double])
case (STRING, StringType) => (updater, ordinal, value) =>
val str = value match {
case s: String => UTF8String.fromString(s)
case s: Utf8 =>
val bytes = new Array[Byte](s.getByteLength)
System.arraycopy(s.getBytes, 0, bytes, 0, s.getByteLength)
UTF8String.fromBytes(bytes)
case s: GenericData.EnumSymbol => UTF8String.fromString(s.toString)
}
updater.set(ordinal, str)
case (ENUM, StringType) => (updater, ordinal, value) =>
updater.set(ordinal, UTF8String.fromString(value.toString))
case (FIXED, BinaryType) => (updater, ordinal, value) =>
updater.set(ordinal, value.asInstanceOf[GenericFixed].bytes().clone())
case (BYTES, BinaryType) => (updater, ordinal, value) =>
val bytes = value match {
case b: ByteBuffer =>
val bytes = new Array[Byte](b.remaining)
b.get(bytes)
// Do not forget to reset the position
b.rewind()
bytes
case b: Array[Byte] => b
case other =>
throw new RuntimeException(errorPrefix + s"$other is not a valid avro binary.")
}
updater.set(ordinal, bytes)
case (FIXED, _: DecimalType) => (updater, ordinal, value) =>
val d = avroType.getLogicalType.asInstanceOf[LogicalTypes.Decimal]
val bigDecimal = decimalConversions.fromFixed(value.asInstanceOf[GenericFixed], avroType, d)
val decimal = createDecimal(bigDecimal, d.getPrecision, d.getScale)
updater.setDecimal(ordinal, decimal)
case (BYTES, _: DecimalType) => (updater, ordinal, value) =>
val d = avroType.getLogicalType.asInstanceOf[LogicalTypes.Decimal]
val bigDecimal = decimalConversions.fromBytes(value.asInstanceOf[ByteBuffer], avroType, d)
val decimal = createDecimal(bigDecimal, d.getPrecision, d.getScale)
updater.setDecimal(ordinal, decimal)
case (RECORD, st: StructType) =>
// Avro datasource doesn't accept filters with nested attributes. See SPARK-32328.
// We can always return `false` from `applyFilters` for nested records.
val writeRecord =
getRecordWriter(avroType, st, avroPath, catalystPath, applyFilters = _ => false)
(updater, ordinal, value) =>
val row = new SpecificInternalRow(st)
writeRecord(new RowUpdater(row), value.asInstanceOf[GenericRecord])
updater.set(ordinal, row)
case (ARRAY, ArrayType(elementType, containsNull)) =>
val avroElementPath = avroPath :+ "element"
val elementWriter = newWriter(avroType.getElementType, elementType,
avroElementPath, catalystPath :+ "element")
(updater, ordinal, value) =>
val collection = value.asInstanceOf[java.util.Collection[Any]]
val result = createArrayData(elementType, collection.size())
val elementUpdater = new ArrayDataUpdater(result)
var i = 0
val iter = collection.iterator()
while (iter.hasNext) {
val element = iter.next()
if (element == null) {
if (!containsNull) {
throw new RuntimeException(
s"Array value at path ${toFieldStr(avroElementPath)} is not allowed to be null")
} else {
elementUpdater.setNullAt(i)
}
} else {
elementWriter(elementUpdater, i, element)
}
i += 1
}
updater.set(ordinal, result)
case (MAP, MapType(keyType, valueType, valueContainsNull)) if keyType == StringType =>
val keyWriter = newWriter(SchemaBuilder.builder().stringType(), StringType,
avroPath :+ "key", catalystPath :+ "key")
val valueWriter = newWriter(avroType.getValueType, valueType,
avroPath :+ "value", catalystPath :+ "value")
(updater, ordinal, value) =>
val map = value.asInstanceOf[java.util.Map[AnyRef, AnyRef]]
val keyArray = createArrayData(keyType, map.size())
val keyUpdater = new ArrayDataUpdater(keyArray)
val valueArray = createArrayData(valueType, map.size())
val valueUpdater = new ArrayDataUpdater(valueArray)
val iter = map.entrySet().iterator()
var i = 0
while (iter.hasNext) {
val entry = iter.next()
assert(entry.getKey != null)
keyWriter(keyUpdater, i, entry.getKey)
if (entry.getValue == null) {
if (!valueContainsNull) {
throw new RuntimeException(
s"Map value at path ${toFieldStr(avroPath :+ "value")} is not allowed to be null")
} else {
valueUpdater.setNullAt(i)
}
} else {
valueWriter(valueUpdater, i, entry.getValue)
}
i += 1
}
// The Avro map will never have null or duplicated map keys, it's safe to create a
// ArrayBasedMapData directly here.
updater.set(ordinal, new ArrayBasedMapData(keyArray, valueArray))
case (UNION, _) =>
val allTypes = avroType.getTypes.asScala
val nonNullTypes = allTypes.filter(_.getType != NULL)
val nonNullAvroType = Schema.createUnion(nonNullTypes.asJava)
if (nonNullTypes.nonEmpty) {
if (nonNullTypes.length == 1) {
newWriter(nonNullTypes.head, catalystType, avroPath, catalystPath)
} else {
nonNullTypes.map(_.getType).toSeq match {
case Seq(a, b) if Set(a, b) == Set(INT, LONG) && catalystType == LongType =>
(updater, ordinal, value) => value match {
case null => updater.setNullAt(ordinal)
case l: java.lang.Long => updater.setLong(ordinal, l)
case i: java.lang.Integer => updater.setLong(ordinal, i.longValue())
}
case Seq(a, b) if Set(a, b) == Set(FLOAT, DOUBLE) && catalystType == DoubleType =>
(updater, ordinal, value) => value match {
case null => updater.setNullAt(ordinal)
case d: java.lang.Double => updater.setDouble(ordinal, d)
case f: java.lang.Float => updater.setDouble(ordinal, f.doubleValue())
}
case _ =>
catalystType match {
case st: StructType if st.length == nonNullTypes.size =>
val fieldWriters = nonNullTypes.zip(st.fields).map {
case (schema, field) =>
newWriter(schema, field.dataType, avroPath, catalystPath :+ field.name)
}.toArray
(updater, ordinal, value) => {
val row = new SpecificInternalRow(st)
val fieldUpdater = new RowUpdater(row)
val i = GenericData.get().resolveUnion(nonNullAvroType, value)
fieldWriters(i)(fieldUpdater, i, value)
updater.set(ordinal, row)
}
case _ => throw new IncompatibleSchemaException(incompatibleMsg)
}
}
}
} else {
(updater, ordinal, _) => updater.setNullAt(ordinal)
}
case (INT, _: YearMonthIntervalType) => (updater, ordinal, value) =>
updater.setInt(ordinal, value.asInstanceOf[Int])
case (LONG, _: DayTimeIntervalType) => (updater, ordinal, value) =>
updater.setLong(ordinal, value.asInstanceOf[Long])
case _ => throw new IncompatibleSchemaException(incompatibleMsg)
}
}
// TODO: move the following method in Decimal object on creating Decimal from BigDecimal?
private def createDecimal(decimal: BigDecimal, precision: Int, scale: Int): Decimal = {
if (precision <= Decimal.MAX_LONG_DIGITS) {
// Constructs a `Decimal` with an unscaled `Long` value if possible.
Decimal(decimal.unscaledValue().longValue(), precision, scale)
} else {
// Otherwise, resorts to an unscaled `BigInteger` instead.
Decimal(decimal, precision, scale)
}
}
private def getRecordWriter(
avroType: Schema,
catalystType: StructType,
avroPath: Seq[String],
catalystPath: Seq[String],
applyFilters: Int => Boolean): (CatalystDataUpdater, GenericRecord) => Boolean = {
val avroSchemaHelper = new AvroUtils.AvroSchemaHelper(
avroType, catalystType, avroPath, catalystPath, positionalFieldMatch)
avroSchemaHelper.validateNoExtraCatalystFields(ignoreNullable = true)
// no need to validateNoExtraAvroFields since extra Avro fields are ignored
val (validFieldIndexes, fieldWriters) = avroSchemaHelper.matchedFields.map {
case AvroMatchedField(catalystField, ordinal, avroField) =>
val baseWriter = newWriter(avroField.schema(), catalystField.dataType,
avroPath :+ avroField.name, catalystPath :+ catalystField.name)
val fieldWriter = (fieldUpdater: CatalystDataUpdater, value: Any) => {
if (value == null) {
fieldUpdater.setNullAt(ordinal)
} else {
baseWriter(fieldUpdater, ordinal, value)
}
}
(avroField.pos(), fieldWriter)
}.toArray.unzip
(fieldUpdater, record) => {
var i = 0
var skipRow = false
while (i < validFieldIndexes.length && !skipRow) {
fieldWriters(i)(fieldUpdater, record.get(validFieldIndexes(i)))
skipRow = applyFilters(i)
i += 1
}
skipRow
}
}
private def createArrayData(elementType: DataType, length: Int): ArrayData = elementType match {
case BooleanType => UnsafeArrayData.fromPrimitiveArray(new Array[Boolean](length))
case ByteType => UnsafeArrayData.fromPrimitiveArray(new Array[Byte](length))
case ShortType => UnsafeArrayData.fromPrimitiveArray(new Array[Short](length))
case IntegerType => UnsafeArrayData.fromPrimitiveArray(new Array[Int](length))
case LongType => UnsafeArrayData.fromPrimitiveArray(new Array[Long](length))
case FloatType => UnsafeArrayData.fromPrimitiveArray(new Array[Float](length))
case DoubleType => UnsafeArrayData.fromPrimitiveArray(new Array[Double](length))
case _ => new GenericArrayData(new Array[Any](length))
}
/**
* A base interface for updating values inside catalyst data structure like `InternalRow` and
* `ArrayData`.
*/
sealed trait CatalystDataUpdater {
def set(ordinal: Int, value: Any): Unit
def setNullAt(ordinal: Int): Unit = set(ordinal, null)
def setBoolean(ordinal: Int, value: Boolean): Unit = set(ordinal, value)
def setByte(ordinal: Int, value: Byte): Unit = set(ordinal, value)
def setShort(ordinal: Int, value: Short): Unit = set(ordinal, value)
def setInt(ordinal: Int, value: Int): Unit = set(ordinal, value)
def setLong(ordinal: Int, value: Long): Unit = set(ordinal, value)
def setDouble(ordinal: Int, value: Double): Unit = set(ordinal, value)
def setFloat(ordinal: Int, value: Float): Unit = set(ordinal, value)
def setDecimal(ordinal: Int, value: Decimal): Unit = set(ordinal, value)
}
final class RowUpdater(row: InternalRow) extends CatalystDataUpdater {
override def set(ordinal: Int, value: Any): Unit = row.update(ordinal, value)
override def setNullAt(ordinal: Int): Unit = row.setNullAt(ordinal)
override def setBoolean(ordinal: Int, value: Boolean): Unit = row.setBoolean(ordinal, value)
override def setByte(ordinal: Int, value: Byte): Unit = row.setByte(ordinal, value)
override def setShort(ordinal: Int, value: Short): Unit = row.setShort(ordinal, value)
override def setInt(ordinal: Int, value: Int): Unit = row.setInt(ordinal, value)
override def setLong(ordinal: Int, value: Long): Unit = row.setLong(ordinal, value)
override def setDouble(ordinal: Int, value: Double): Unit = row.setDouble(ordinal, value)
override def setFloat(ordinal: Int, value: Float): Unit = row.setFloat(ordinal, value)
override def setDecimal(ordinal: Int, value: Decimal): Unit =
row.setDecimal(ordinal, value, value.precision)
}
final class ArrayDataUpdater(array: ArrayData) extends CatalystDataUpdater {
override def set(ordinal: Int, value: Any): Unit = array.update(ordinal, value)
override def setNullAt(ordinal: Int): Unit = array.setNullAt(ordinal)
override def setBoolean(ordinal: Int, value: Boolean): Unit = array.setBoolean(ordinal, value)
override def setByte(ordinal: Int, value: Byte): Unit = array.setByte(ordinal, value)
override def setShort(ordinal: Int, value: Short): Unit = array.setShort(ordinal, value)
override def setInt(ordinal: Int, value: Int): Unit = array.setInt(ordinal, value)
override def setLong(ordinal: Int, value: Long): Unit = array.setLong(ordinal, value)
override def setDouble(ordinal: Int, value: Double): Unit = array.setDouble(ordinal, value)
override def setFloat(ordinal: Int, value: Float): Unit = array.setFloat(ordinal, value)
override def setDecimal(ordinal: Int, value: Decimal): Unit = array.update(ordinal, value)
}
}
object AvroDeserializer {
// NOTE: Following methods have been renamed in Spark 3.2.1 [1] making [[AvroDeserializer]] implementation
// (which relies on it) be only compatible with the exact same version of [[DataSourceUtils]].
// To make sure this implementation is compatible w/ all Spark versions w/in Spark 3.2.x branch,
// we're preemptively cloned those methods to make sure Hudi is compatible w/ Spark 3.2.0 as well as
// w/ Spark >= 3.2.1
//
// [1] https://github.com/apache/spark/pull/34978
// Specification of rebase operation including `mode` and the time zone in which it is performed
case class RebaseSpec(mode: LegacyBehaviorPolicy.Value, originTimeZone: Option[String] = None) {
// Use the default JVM time zone for backward compatibility
def timeZone: String = originTimeZone.getOrElse(TimeZone.getDefault.getID)
}
def createDateRebaseFuncInRead(rebaseMode: LegacyBehaviorPolicy.Value,
format: String): Int => Int = rebaseMode match {
case LegacyBehaviorPolicy.EXCEPTION => days: Int =>
if (days < RebaseDateTime.lastSwitchJulianDay) {
throw DataSourceUtils.newRebaseExceptionInRead(format)
}
days
case LegacyBehaviorPolicy.LEGACY => RebaseDateTime.rebaseJulianToGregorianDays
case LegacyBehaviorPolicy.CORRECTED => identity[Int]
}
def createTimestampRebaseFuncInRead(rebaseSpec: RebaseSpec,
format: String): Long => Long = rebaseSpec.mode match {
case LegacyBehaviorPolicy.EXCEPTION => micros: Long =>
if (micros < RebaseDateTime.lastSwitchJulianTs) {
throw DataSourceUtils.newRebaseExceptionInRead(format)
}
micros
case LegacyBehaviorPolicy.LEGACY => micros: Long =>
RebaseDateTime.rebaseJulianToGregorianMicros(TimeZone.getTimeZone(rebaseSpec.timeZone), micros)
case LegacyBehaviorPolicy.CORRECTED => identity[Long]
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy