org.apache.hudi.com.google.protobuf.Internal Maven / Gradle / Ivy
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
package com.google.protobuf;
import java.lang.reflect.Method;
import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.util.AbstractList;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.RandomAccess;
import java.util.Set;
/**
* The classes contained within are used internally by the Protocol Buffer library and generated
* message implementations. They are public only because those generated messages do not reside in
* the {@code protobuf} package. Others should not use this class directly.
*
* @author [email protected] (Kenton Varda)
*/
public final class Internal {
private Internal() {}
static final Charset US_ASCII = Charset.forName("US-ASCII");
static final Charset UTF_8 = Charset.forName("UTF-8");
static final Charset ISO_8859_1 = Charset.forName("ISO-8859-1");
/** Throws an appropriate {@link NullPointerException} if the given objects is {@code null}. */
static T checkNotNull(T obj) {
if (obj == null) {
throw new NullPointerException();
}
return obj;
}
/** Throws an appropriate {@link NullPointerException} if the given objects is {@code null}. */
static T checkNotNull(T obj, String message) {
if (obj == null) {
throw new NullPointerException(message);
}
return obj;
}
/**
* Helper called by generated code to construct default values for string fields.
*
* The protocol compiler does not actually contain a UTF-8 decoder -- it just pushes
* UTF-8-encoded text around without touching it. The one place where this presents a problem is
* when generating Java string literals. Unicode characters in the string literal would normally
* need to be encoded using a Unicode escape sequence, which would require decoding them. To get
* around this, protoc instead embeds the UTF-8 bytes into the generated code and leaves it to the
* runtime library to decode them.
*
*
It gets worse, though. If protoc just generated a byte array, like: new byte[] {0x12, 0x34,
* 0x56, 0x78} Java actually generates *code* which allocates an array and then fills in each
* value. This is much less efficient than just embedding the bytes directly into the bytecode. To
* get around this, we need another work-around. String literals are embedded directly, so protoc
* actually generates a string literal corresponding to the bytes. The easiest way to do this is
* to use the ISO-8859-1 character set, which corresponds to the first 256 characters of the
* Unicode range. Protoc can then use good old CEscape to generate the string.
*
*
So we have a string literal which represents a set of bytes which represents another string.
* This function -- stringDefaultValue -- converts from the generated string to the string we
* actually want. The generated code calls this automatically.
*/
public static String stringDefaultValue(String bytes) {
return new String(bytes.getBytes(ISO_8859_1), UTF_8);
}
/**
* Helper called by generated code to construct default values for bytes fields.
*
*
This is a lot like {@link #stringDefaultValue}, but for bytes fields. In this case we only
* need the second of the two hacks -- allowing us to embed raw bytes as a string literal with
* ISO-8859-1 encoding.
*/
public static ByteString bytesDefaultValue(String bytes) {
return ByteString.copyFrom(bytes.getBytes(ISO_8859_1));
}
/**
* Helper called by generated code to construct default values for bytes fields.
*
*
This is like {@link #bytesDefaultValue}, but returns a byte array.
*/
public static byte[] byteArrayDefaultValue(String bytes) {
return bytes.getBytes(ISO_8859_1);
}
/**
* Helper called by generated code to construct default values for bytes fields.
*
*
This is like {@link #bytesDefaultValue}, but returns a ByteBuffer.
*/
public static ByteBuffer byteBufferDefaultValue(String bytes) {
return ByteBuffer.wrap(byteArrayDefaultValue(bytes));
}
/**
* Create a new ByteBuffer and copy all the content of {@code source} ByteBuffer to the new
* ByteBuffer. The new ByteBuffer's limit and capacity will be source.capacity(), and its position
* will be 0. Note that the state of {@code source} ByteBuffer won't be changed.
*/
public static ByteBuffer copyByteBuffer(ByteBuffer source) {
// Make a duplicate of the source ByteBuffer and read data from the
// duplicate. This is to avoid affecting the source ByteBuffer's state.
ByteBuffer temp = source.duplicate();
// We want to copy all the data in the source ByteBuffer, not just the
// remaining bytes.
// View ByteBuffer as Buffer to avoid issue with covariant return types
// See https://issues.apache.org/jira/browse/MRESOLVER-85
((Buffer) temp).clear();
ByteBuffer result = ByteBuffer.allocate(temp.capacity());
result.put(temp);
((Buffer) result).clear();
return result;
}
/**
* Helper called by generated code to determine if a byte array is a valid UTF-8 encoded string
* such that the original bytes can be converted to a String object and then back to a byte array
* round tripping the bytes without loss. More precisely, returns {@code true} whenever:
*
*
{@code
* Arrays.equals(byteString.toByteArray(),
* new String(byteString.toByteArray(), "UTF-8").getBytes("UTF-8"))
* }
*
* This method rejects "overlong" byte sequences, as well as 3-byte sequences that would map to
* a surrogate character, in accordance with the restricted definition of UTF-8 introduced in
* Unicode 3.1. Note that the UTF-8 decoder included in Oracle's JDK has been modified to also
* reject "overlong" byte sequences, but currently (2011) still accepts 3-byte surrogate character
* byte sequences.
*
*
See the Unicode Standard,
* Table 3-6. UTF-8 Bit Distribution,
* Table 3-7. Well Formed UTF-8 Byte Sequences.
*
*
As of 2011-02, this method simply returns the result of {@link ByteString#isValidUtf8()}.
* Calling that method directly is preferred.
*
* @param byteString the string to check
* @return whether the byte array is round trippable
*/
public static boolean isValidUtf8(ByteString byteString) {
return byteString.isValidUtf8();
}
/** Like {@link #isValidUtf8(ByteString)} but for byte arrays. */
public static boolean isValidUtf8(byte[] byteArray) {
return Utf8.isValidUtf8(byteArray);
}
/** Helper method to get the UTF-8 bytes of a string. */
public static byte[] toByteArray(String value) {
return value.getBytes(UTF_8);
}
/** Helper method to convert a byte array to a string using UTF-8 encoding. */
public static String toStringUtf8(byte[] bytes) {
return new String(bytes, UTF_8);
}
/**
* Interface for an enum value or value descriptor, to be used in FieldSet. The lite library
* stores enum values directly in FieldSets but the full library stores EnumValueDescriptors in
* order to better support reflection.
*/
public interface EnumLite {
int getNumber();
}
/**
* Interface for an object which maps integers to {@link EnumLite}s. {@link
* Descriptors.EnumDescriptor} implements this interface by mapping numbers to {@link
* Descriptors.EnumValueDescriptor}s. Additionally, every generated enum type has a static method
* internalGetValueMap() which returns an implementation of this type that maps numbers to enum
* values.
*/
public interface EnumLiteMap {
T findValueByNumber(int number);
}
/** Interface for an object which verifies integers are in range. */
public interface EnumVerifier {
boolean isInRange(int number);
}
/**
* Helper method for implementing {@link Message#hashCode()} for longs.
*
* @see Long#hashCode()
*/
public static int hashLong(long n) {
return (int) (n ^ (n >>> 32));
}
/**
* Helper method for implementing {@link Message#hashCode()} for booleans.
*
* @see Boolean#hashCode()
*/
public static int hashBoolean(boolean b) {
return b ? 1231 : 1237;
}
/**
* Helper method for implementing {@link Message#hashCode()} for enums.
*
* This is needed because {@link java.lang.Enum#hashCode()} is final, but we need to use the
* field number as the hash code to ensure compatibility between statically and dynamically
* generated enum objects.
*/
public static int hashEnum(EnumLite e) {
return e.getNumber();
}
/** Helper method for implementing {@link Message#hashCode()} for enum lists. */
public static int hashEnumList(List extends EnumLite> list) {
int hash = 1;
for (EnumLite e : list) {
hash = 31 * hash + hashEnum(e);
}
return hash;
}
/** Helper method for implementing {@link Message#equals(Object)} for bytes field. */
public static boolean equals(List a, List b) {
if (a.size() != b.size()) {
return false;
}
for (int i = 0; i < a.size(); ++i) {
if (!Arrays.equals(a.get(i), b.get(i))) {
return false;
}
}
return true;
}
/** Helper method for implementing {@link Message#hashCode()} for bytes field. */
public static int hashCode(List list) {
int hash = 1;
for (byte[] bytes : list) {
hash = 31 * hash + hashCode(bytes);
}
return hash;
}
/** Helper method for implementing {@link Message#hashCode()} for bytes field. */
public static int hashCode(byte[] bytes) {
// The hash code for a byte array should be the same as the hash code for a
// ByteString with the same content. This is to ensure that the generated
// hashCode() method will return the same value as the pure reflection
// based hashCode() method.
return Internal.hashCode(bytes, 0, bytes.length);
}
/** Helper method for implementing {@link LiteralByteString#hashCode()}. */
static int hashCode(byte[] bytes, int offset, int length) {
// The hash code for a byte array should be the same as the hash code for a
// ByteString with the same content. This is to ensure that the generated
// hashCode() method will return the same value as the pure reflection
// based hashCode() method.
int h = Internal.partialHash(length, bytes, offset, length);
return h == 0 ? 1 : h;
}
/** Helper method for continuously hashing bytes. */
static int partialHash(int h, byte[] bytes, int offset, int length) {
for (int i = offset; i < offset + length; i++) {
h = h * 31 + bytes[i];
}
return h;
}
/** Helper method for implementing {@link Message#equals(Object)} for bytes field. */
public static boolean equalsByteBuffer(ByteBuffer a, ByteBuffer b) {
if (a.capacity() != b.capacity()) {
return false;
}
// ByteBuffer.equals() will only compare the remaining bytes, but we want to
// compare all the content.
ByteBuffer aDuplicate = a.duplicate();
Java8Compatibility.clear(aDuplicate);
ByteBuffer bDuplicate = b.duplicate();
Java8Compatibility.clear(bDuplicate);
return aDuplicate.equals(bDuplicate);
}
/** Helper method for implementing {@link Message#equals(Object)} for bytes field. */
public static boolean equalsByteBuffer(List a, List b) {
if (a.size() != b.size()) {
return false;
}
for (int i = 0; i < a.size(); ++i) {
if (!equalsByteBuffer(a.get(i), b.get(i))) {
return false;
}
}
return true;
}
/** Helper method for implementing {@link Message#hashCode()} for bytes field. */
public static int hashCodeByteBuffer(List list) {
int hash = 1;
for (ByteBuffer bytes : list) {
hash = 31 * hash + hashCodeByteBuffer(bytes);
}
return hash;
}
private static final int DEFAULT_BUFFER_SIZE = 4096;
/** Helper method for implementing {@link Message#hashCode()} for bytes field. */
public static int hashCodeByteBuffer(ByteBuffer bytes) {
if (bytes.hasArray()) {
// Fast path.
int h = partialHash(bytes.capacity(), bytes.array(), bytes.arrayOffset(), bytes.capacity());
return h == 0 ? 1 : h;
} else {
// Read the data into a temporary byte array before calculating the
// hash value.
final int bufferSize =
bytes.capacity() > DEFAULT_BUFFER_SIZE ? DEFAULT_BUFFER_SIZE : bytes.capacity();
final byte[] buffer = new byte[bufferSize];
final ByteBuffer duplicated = bytes.duplicate();
Java8Compatibility.clear(duplicated);
int h = bytes.capacity();
while (duplicated.remaining() > 0) {
final int length =
duplicated.remaining() <= bufferSize ? duplicated.remaining() : bufferSize;
duplicated.get(buffer, 0, length);
h = partialHash(h, buffer, 0, length);
}
return h == 0 ? 1 : h;
}
}
@SuppressWarnings("unchecked")
public static T getDefaultInstance(Class clazz) {
try {
Method method = clazz.getMethod("getDefaultInstance");
return (T) method.invoke(method);
} catch (Exception e) {
throw new RuntimeException("Failed to get default instance for " + clazz, e);
}
}
/** An empty byte array constant used in generated code. */
public static final byte[] EMPTY_BYTE_ARRAY = new byte[0];
/** An empty byte array constant used in generated code. */
public static final ByteBuffer EMPTY_BYTE_BUFFER = ByteBuffer.wrap(EMPTY_BYTE_ARRAY);
/** An empty coded input stream constant used in generated code. */
public static final CodedInputStream EMPTY_CODED_INPUT_STREAM =
CodedInputStream.newInstance(EMPTY_BYTE_ARRAY);
/** Helper method to merge two MessageLite instances. */
static Object mergeMessage(Object destination, Object source) {
return ((MessageLite) destination).toBuilder().mergeFrom((MessageLite) source).buildPartial();
}
/**
* Provides an immutable view of {@code List} around a {@code List}.
*
*