org.apache.hudi.org.roaringbitmap.ParallelAggregation Maven / Gradle / Ivy
package org.roaringbitmap;
import java.util.*;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.function.BiConsumer;
import java.util.function.BinaryOperator;
import java.util.function.Function;
import java.util.function.Supplier;
import java.util.stream.Collector;
import java.util.stream.IntStream;
/**
*
* These utility methods provide parallel implementations of
* logical aggregation operators. AND is not implemented
* because it is unlikely to be profitable.
*
* There is a temporary memory overhead in using these methods,
* since a materialisation of the rotated containers grouped by key
* is created in each case.
*
* Each method executes on the default fork join pool by default.
* If this is undesirable (it usually is) wrap the call inside
* a submission of a runnable to your own thread pool.
*
*
* {@code
*
* //...
*
* ExecutorService executor = ...
* RoaringBitmap[] bitmaps = ...
* // executes on executors threads
* RoaringBitmap result = executor.submit(() -> ParallelAggregation.or(bitmaps)).get();
* }
*
*/
public class ParallelAggregation {
private static final Collector>,
RoaringArray, RoaringBitmap>
XOR = new ContainerCollector(ParallelAggregation::xor);
private static final OrCollector OR = new OrCollector();
/**
* Collects containers grouped by their key into a RoaringBitmap, applying the
* supplied aggregation function to each group.
*/
public static class ContainerCollector implements
Collector>, RoaringArray, RoaringBitmap> {
private final Function, Container> reducer;
/**
* Creates a collector with the reducer function.
* @param reducer a function to apply to containers with the same key.
*/
ContainerCollector(Function, Container> reducer) {
this.reducer = reducer;
}
@Override
public Supplier supplier() {
return RoaringArray::new;
}
@Override
public BiConsumer>> accumulator() {
return (l, r) -> {
assert l.size == 0 || l.keys[l.size - 1] < r.getKey();
Container container = reducer.apply(r.getValue());
if (!container.isEmpty()) {
l.append(r.getKey(), container);
}
};
}
@Override
public BinaryOperator combiner() {
return (l, r) -> {
assert l.size == 0 || r.size == 0 || l.keys[l.size - 1] - r.keys[0] < 0;
l.append(r);
return l;
};
}
@Override
public Function finisher() {
return RoaringBitmap::new;
}
@Override
public Set characteristics() {
return EnumSet.noneOf(Characteristics.class);
}
}
/**
* Collects a list of containers into a single container.
*/
public static class OrCollector
implements Collector, Container, Container> {
@Override
public Supplier supplier() {
return () -> new BitmapContainer(new long[1 << 10], -1);
}
@Override
public BiConsumer> accumulator() {
return (l, r) -> l.lazyIOR(or(r));
}
@Override
public BinaryOperator combiner() {
return Container::lazyIOR;
}
@Override
public Function finisher() {
return Container::repairAfterLazy;
}
@Override
public Set characteristics() {
return EnumSet.of(Characteristics.UNORDERED);
}
}
/**
* Groups the containers by their keys
* @param bitmaps input bitmaps
* @return The containers from the bitmaps grouped by key
*/
public static SortedMap> groupByKey(RoaringBitmap... bitmaps) {
Map> grouped = new HashMap<>();
for (RoaringBitmap bitmap : bitmaps) {
RoaringArray ra = bitmap.highLowContainer;
for (int i = 0; i < ra.size; ++i) {
Container container = ra.values[i];
Character key = ra.keys[i];
List slice = grouped.get(key);
if (null == slice) {
slice = new ArrayList<>();
grouped.put(key, slice);
}
slice.add(container);
}
}
return new TreeMap<>(grouped);
}
/**
* Computes the bitwise union of the input bitmaps
* @param bitmaps the input bitmaps
* @return the union of the bitmaps
*/
public static RoaringBitmap or(RoaringBitmap... bitmaps) {
SortedMap> grouped = groupByKey(bitmaps);
char[] keys = new char[grouped.size()];
Container[] values = new Container[grouped.size()];
List> slices = new ArrayList<>(grouped.size());
int i = 0;
for (Map.Entry> slice : grouped.entrySet()) {
keys[i++] = slice.getKey();
slices.add(slice.getValue());
}
IntStream.range(0, i)
.parallel()
.forEach(position -> values[position] = or(slices.get(position)));
return new RoaringBitmap(new RoaringArray(keys, values, i));
}
/**
* Computes the bitwise symmetric difference of the input bitmaps
* @param bitmaps the input bitmaps
* @return the symmetric difference of the bitmaps
*/
public static RoaringBitmap xor(RoaringBitmap... bitmaps) {
return groupByKey(bitmaps)
.entrySet()
.parallelStream()
.collect(XOR);
}
private static Container xor(List containers) {
Container result = containers.get(0).clone();
for (int i = 1; i < containers.size(); ++i) {
result = result.ixor(containers.get(i));
}
return result;
}
private static Container or(List containers) {
int parallelism;
// if there are few enough containers it's possible no bitmaps will be materialised
if (containers.size() < 16) {
Container result = containers.get(0).clone();
for (int i = 1; i < containers.size(); ++i) {
result = result.lazyIOR(containers.get(i));
}
return result.repairAfterLazy();
}
// heuristic to save memory if the union is large and likely to end up as a bitmap
if (containers.size() < 512 || (parallelism = availableParallelism()) == 1) {
Container result = new BitmapContainer(new long[1 << 10], -1);
for (Container container : containers) {
result = result.lazyIOR(container);
}
return result.repairAfterLazy();
}
int step = Math.floorDiv(containers.size(), parallelism);
int mod = Math.floorMod(containers.size(), parallelism);
// we have an enormous slice (probably skewed), parallelise it
return IntStream.range(0, parallelism)
.parallel()
.mapToObj(i -> containers.subList(i * step + Math.min(i, mod),
(i + 1) * step + Math.min(i + 1, mod)))
.collect(OR);
}
private static int availableParallelism() {
return ForkJoinTask.inForkJoinPool()
? ForkJoinTask.getPool().getParallelism()
: ForkJoinPool.getCommonPoolParallelism();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy