All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.utilities.sources.RowSource Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi.utilities.sources;

import org.apache.hudi.HoodieSparkUtils;
import org.apache.hudi.common.config.TypedProperties;
import org.apache.hudi.common.table.checkpoint.Checkpoint;
import org.apache.hudi.common.util.ConfigUtils;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.common.util.collection.Pair;
import org.apache.hudi.utilities.UtilHelpers;
import org.apache.hudi.utilities.exception.HoodieReadFromSourceException;
import org.apache.hudi.utilities.schema.SchemaProvider;
import org.apache.hudi.utilities.sources.helpers.SanitizationUtils;
import org.apache.hudi.utilities.streamer.StreamContext;

import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;

import static org.apache.hudi.utilities.config.HoodieStreamerConfig.ROW_THROW_EXPLICIT_EXCEPTIONS;

public abstract class RowSource extends Source> {

  public RowSource(TypedProperties props, JavaSparkContext sparkContext, SparkSession sparkSession,
      SchemaProvider schemaProvider) {
    super(props, sparkContext, sparkSession, schemaProvider, SourceType.ROW);
  }
  
  public RowSource(TypedProperties props, JavaSparkContext sparkContext, SparkSession sparkSession,
                   StreamContext streamContext) {
    super(props, sparkContext, sparkSession, SourceType.ROW, streamContext);
  }

  protected abstract Pair>, Checkpoint> fetchNextBatch(Option lastCheckpoint, long sourceLimit);

  @Override
  protected final InputBatch> fetchNewData(Option lastCkptStr, long sourceLimit) {
    throw new UnsupportedOperationException("RowSource#fetchNewData should not be called");
  }

  @Override
  protected final InputBatch> readFromCheckpoint(Option lastCheckpoint, long sourceLimit) {
    Pair>, Checkpoint> res = fetchNextBatch(lastCheckpoint, sourceLimit);
    return res.getKey().map(dsr -> {
      Dataset sanitizedRows = SanitizationUtils.sanitizeColumnNamesForAvro(dsr, props);
      SchemaProvider rowSchemaProvider =
          UtilHelpers.createRowBasedSchemaProvider(sanitizedRows.schema(), props, sparkContext);
      Dataset wrappedDf = HoodieSparkUtils.maybeWrapDataFrameWithException(sanitizedRows, HoodieReadFromSourceException.class.getName(),
          "Failed to read from row source", ConfigUtils.getBooleanWithAltKeys(props, ROW_THROW_EXPLICIT_EXCEPTIONS));
      return new InputBatch<>(Option.of(wrappedDf), res.getValue(), rowSchemaProvider);
    }).orElseGet(() -> new InputBatch<>(res.getKey(), res.getValue()));
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy