All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hudi.utilities.HDFSParquetImporter Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hudi.utilities;

import org.apache.hudi.client.SparkRDDWriteClient;
import org.apache.hudi.client.WriteStatus;
import org.apache.hudi.client.common.HoodieSparkEngineContext;
import org.apache.hudi.common.HoodieJsonPayload;
import org.apache.hudi.common.config.TypedProperties;
import org.apache.hudi.common.engine.HoodieEngineContext;
import org.apache.hudi.common.model.HoodieAvroRecord;
import org.apache.hudi.common.model.HoodieKey;
import org.apache.hudi.common.model.HoodieRecord;
import org.apache.hudi.common.model.HoodieRecordPayload;
import org.apache.hudi.common.table.HoodieTableMetaClient;
import org.apache.hudi.common.table.HoodieTableVersion;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.exception.HoodieIOException;
import org.apache.hudi.hadoop.fs.HadoopFSUtils;
import org.apache.hudi.utilities.streamer.HoodieStreamer;

import com.beust.jcommander.IValueValidator;
import com.beust.jcommander.JCommander;
import com.beust.jcommander.Parameter;
import com.beust.jcommander.ParameterException;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericRecord;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.parquet.avro.AvroReadSupport;
import org.apache.parquet.hadoop.ParquetInputFormat;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.io.Serializable;
import java.time.Instant;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

import scala.Tuple2;

/**
 * Loads data from Parquet Sources.
 *
 * @see HoodieStreamer
 * @deprecated This utility is deprecated in 0.10.0 and will be removed in 0.11.0. Use {@link HoodieStreamer.Config#runBootstrap} instead.
 */
public class HDFSParquetImporter implements Serializable {

  private static final long serialVersionUID = 1L;
  private static final Logger LOG = LoggerFactory.getLogger(HDFSParquetImporter.class);

  private static final DateTimeFormatter PARTITION_FORMATTER = DateTimeFormatter.ofPattern("yyyy/MM/dd")
      .withZone(ZoneId.systemDefault());
  private final Config cfg;
  private transient FileSystem fs;
  /**
   * Bag of properties with source, hoodie client, key generator etc.
   */
  private TypedProperties props;

  public HDFSParquetImporter(Config cfg) {
    this.cfg = cfg;
  }

  public static void main(String[] args) {
    final Config cfg = new Config();
    JCommander cmd = new JCommander(cfg, null, args);
    if (cfg.help || args.length == 0) {
      cmd.usage();
      System.exit(1);
    }
    HDFSParquetImporter dataImporter = new HDFSParquetImporter(cfg);
    JavaSparkContext jssc =
        UtilHelpers.buildSparkContext("data-importer-" + cfg.tableName, cfg.sparkMaster, cfg.sparkMemory);
    try {
      dataImporter.dataImport(jssc, cfg.retry);
    } finally {
      jssc.stop();
    }

  }

  private boolean isUpsert() {
    return "upsert".equalsIgnoreCase(cfg.command);
  }

  public int dataImport(JavaSparkContext jsc, int retry) {
    this.fs = HadoopFSUtils.getFs(cfg.targetPath, jsc.hadoopConfiguration());
    this.props = cfg.propsFilePath == null ? UtilHelpers.buildProperties(cfg.configs)
        : UtilHelpers.readConfig(fs.getConf(), new Path(cfg.propsFilePath), cfg.configs).getProps(true);
    LOG.info("Starting data import with configs : " + props.toString());
    int ret = -1;
    try {
      // Verify that targetPath is not present.
      if (fs.exists(new Path(cfg.targetPath)) && !isUpsert()) {
        throw new HoodieIOException(String.format("Make sure %s is not present.", cfg.targetPath));
      }
      do {
        ret = dataImport(jsc);
      } while (ret != 0 && retry-- > 0);
    } catch (Throwable t) {
      LOG.error("Import data error", t);
    }
    return ret;
  }

  protected int dataImport(JavaSparkContext jsc) throws IOException {
    try {
      if (fs.exists(new Path(cfg.targetPath)) && !isUpsert()) {
        // cleanup target directory.
        fs.delete(new Path(cfg.targetPath), true);
      }

      if (!fs.exists(new Path(cfg.targetPath))) {
        // Initialize target hoodie table.
        HoodieTableMetaClient.newTableBuilder()
            .setTableName(cfg.tableName)
            .setTableType(cfg.tableType)
            .setTableVersion(cfg.tableVersion)
            .initTable(HadoopFSUtils.getStorageConfWithCopy(jsc.hadoopConfiguration()), cfg.targetPath);
      }

      // Get schema.
      String schemaStr = UtilHelpers.parseSchema(fs, cfg.schemaFile);

      SparkRDDWriteClient client =
          UtilHelpers.createHoodieClient(jsc, cfg.targetPath, schemaStr, cfg.parallelism, Option.empty(), props);

      JavaRDD> hoodieRecords = buildHoodieRecordsForImport(jsc, schemaStr);
      // Get instant time.
      String instantTime = client.startCommit();
      JavaRDD writeResponse = load(client, instantTime, hoodieRecords);
      return UtilHelpers.handleErrors(jsc, instantTime, writeResponse);
    } catch (Throwable t) {
      LOG.error("Error occurred.", t);
    }
    return -1;
  }

  protected JavaRDD> buildHoodieRecordsForImport(JavaSparkContext jsc,
      String schemaStr) throws IOException {
    Job job = Job.getInstance(jsc.hadoopConfiguration());
    // Allow recursive directories to be found
    job.getConfiguration().set(FileInputFormat.INPUT_DIR_RECURSIVE, "true");
    // To parallelize reading file status.
    job.getConfiguration().set(FileInputFormat.LIST_STATUS_NUM_THREADS, "1024");
    AvroReadSupport.setAvroReadSchema(jsc.hadoopConfiguration(), (new Schema.Parser().parse(schemaStr)));
    ParquetInputFormat.setReadSupportClass(job, (AvroReadSupport.class));

    HoodieEngineContext context = new HoodieSparkEngineContext(jsc);
    context.setJobStatus(this.getClass().getSimpleName(), "Build records for import: " + cfg.tableName);
    return jsc.newAPIHadoopFile(cfg.srcPath, ParquetInputFormat.class, Void.class, GenericRecord.class,
            job.getConfiguration())
        // To reduce large number of tasks.
        .coalesce(16 * cfg.parallelism).map(entry -> {
          GenericRecord genericRecord = ((Tuple2) entry)._2();
          Object partitionField = genericRecord.get(cfg.partitionKey);
          if (partitionField == null) {
            throw new HoodieIOException("partition key is missing. :" + cfg.partitionKey);
          }
          Object rowField = genericRecord.get(cfg.rowKey);
          if (rowField == null) {
            throw new HoodieIOException("row field is missing. :" + cfg.rowKey);
          }
          String partitionPath = partitionField.toString();
          LOG.debug("Row Key : " + rowField + ", Partition Path is (" + partitionPath + ")");
          if (partitionField instanceof Number) {
            try {
              long ts = (long) (Double.parseDouble(partitionField.toString()) * 1000L);
              partitionPath = PARTITION_FORMATTER.format(Instant.ofEpochMilli(ts));
            } catch (NumberFormatException nfe) {
              LOG.warn("Unable to parse date from partition field. Assuming partition as (" + partitionField + ")");
            }
          }
          return new HoodieAvroRecord<>(new HoodieKey(rowField.toString(), partitionPath),
              new HoodieJsonPayload(genericRecord.toString()));
        });
  }

  /**
   * Imports records to Hoodie table.
   *
   * @param client Hoodie Client
   * @param instantTime Instant Time
   * @param hoodieRecords Hoodie Records
   * @param  Type
   */
  protected  JavaRDD load(SparkRDDWriteClient client, String instantTime,
                                                                      JavaRDD> hoodieRecords) {
    switch (cfg.command.toLowerCase()) {
      case "upsert": {
        return client.upsert(hoodieRecords, instantTime);
      }
      case "bulkinsert": {
        return client.bulkInsert(hoodieRecords, instantTime);
      }
      default: {
        return client.insert(hoodieRecords, instantTime);
      }
    }
  }

  public static class CommandValidator implements IValueValidator {

    List validCommands = Arrays.asList("insert", "upsert", "bulkinsert");

    @Override
    public void validate(String name, String value) {
      if (value == null || !validCommands.contains(value.toLowerCase())) {
        throw new ParameterException(
            String.format("Invalid command: value:%s: supported commands:%s", value, validCommands));
      }
    }
  }

  public static class FormatValidator implements IValueValidator {

    List validFormats = Collections.singletonList("parquet");

    @Override
    public void validate(String name, String value) {
      if (value == null || !validFormats.contains(value)) {
        throw new ParameterException(
            String.format("Invalid format type: value:%s: supported formats:%s", value, validFormats));
      }
    }
  }

  public static class Config implements Serializable {

    @Parameter(names = {"--command", "-c"}, description = "Write command Valid values are insert(default)/upsert/bulkinsert",
        validateValueWith = CommandValidator.class)
    public String command = "INSERT";
    @Parameter(names = {"--src-path", "-sp"}, description = "Base path for the input table", required = true)
    public String srcPath = null;
    @Parameter(names = {"--target-path", "-tp"}, description = "Base path for the target hoodie table",
        required = true)
    public String targetPath = null;
    @Parameter(names = {"--table-name", "-tn"}, description = "Table name", required = true)
    public String tableName = null;
    @Parameter(names = {"--table-type", "-tt"}, description = "Table type", required = true)
    public String tableType = null;
    @Parameter(names = {"--table-version", "-tv"}, description = "Table version")
    public int tableVersion = HoodieTableVersion.current().versionCode();
    @Parameter(names = {"--row-key-field", "-rk"}, description = "Row key field name", required = true)
    public String rowKey = null;
    @Parameter(names = {"--partition-key-field", "-pk"}, description = "Partition key field name", required = true)
    public String partitionKey = null;
    @Parameter(names = {"--parallelism", "-pl"}, description = "Parallelism for hoodie insert(default)/upsert/bulkinsert", required = true)
    public int parallelism = 1;
    @Parameter(names = {"--schema-file", "-sf"}, description = "path for Avro schema file", required = true)
    public String schemaFile = null;
    @Parameter(names = {"--format", "-f"}, description = "Format for the input data.", validateValueWith = FormatValidator.class)
    public String format = null;
    @Parameter(names = {"--spark-master", "-ms"}, description = "Spark master")
    public String sparkMaster = null;
    @Parameter(names = {"--spark-memory", "-sm"}, description = "spark memory to use", required = true)
    public String sparkMemory = null;
    @Parameter(names = {"--retry", "-rt"}, description = "number of retries")
    public int retry = 0;
    @Parameter(names = {"--props"}, description = "path to properties file on localfs or dfs, with configurations for "
        + "hoodie client for importing")
    public String propsFilePath = null;
    @Parameter(names = {"--hoodie-conf"}, description = "Any configuration that can be set in the properties file "
        + "(using the CLI parameter \"--props\") can also be passed command line using this parameter. This can be repeated",
            splitter = IdentitySplitter.class)
    public List configs = new ArrayList<>();
    @Parameter(names = {"--help", "-h"}, help = true)
    public Boolean help = false;
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy