org.apache.hudi.utilities.sources.CsvDFSSource Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hudi.utilities.sources;
import org.apache.hudi.common.config.TypedProperties;
import org.apache.hudi.common.table.checkpoint.Checkpoint;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.common.util.collection.Pair;
import org.apache.hudi.utilities.schema.SchemaProvider;
import org.apache.hudi.utilities.sources.helpers.DFSPathSelector;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrameReader;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.avro.SchemaConverters;
import org.apache.spark.sql.types.StructType;
import java.util.Arrays;
import java.util.List;
import static org.apache.hudi.common.util.ConfigUtils.DELTA_STREAMER_CONFIG_PREFIX;
import static org.apache.hudi.common.util.ConfigUtils.STREAMER_CONFIG_PREFIX;
/**
* Reads data from CSV files on DFS as the data source.
*
* Internally, we use Spark to read CSV files thus any limitation of Spark CSV also applies here
* (e.g., limited support for nested schema).
*
* You can set the CSV-specific configs in the format of hoodie.streamer.csv.*
* that are Spark compatible to deal with CSV files in Hudi. The supported options are:
*
* "sep", "encoding", "quote", "escape", "charToEscapeQuoteEscaping", "comment",
* "header", "enforceSchema", "inferSchema", "samplingRatio", "ignoreLeadingWhiteSpace",
* "ignoreTrailingWhiteSpace", "nullValue", "emptyValue", "nanValue", "positiveInf",
* "negativeInf", "dateFormat", "timestampFormat", "maxColumns", "maxCharsPerColumn",
* "mode", "columnNameOfCorruptRecord", "multiLine"
*
* Detailed information of these CSV options can be found at:
* https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrameReader.html#csv-scala.collection.Seq-
*
* If the source Avro schema is provided through the {@link org.apache.hudi.utilities.schema.FilebasedSchemaProvider}
* using "hoodie.streamer.schemaprovider.source.schema.file" config, the schema is
* passed to the CSV reader without inferring the schema from the CSV file.
*/
public class CsvDFSSource extends RowSource {
private static final long serialVersionUID = 1L;
// CsvSource config prefix
protected static final String CSV_SRC_CONFIG_PREFIX = STREAMER_CONFIG_PREFIX + "csv.";
protected static final String OLD_CSV_SRC_CONFIG_PREFIX = DELTA_STREAMER_CONFIG_PREFIX + "csv.";
// CSV-specific configurations to pass in from Hudi to Spark
protected static final List CSV_CONFIG_KEYS = Arrays.asList(
"sep", "encoding", "quote", "escape", "charToEscapeQuoteEscaping", "comment",
"header", "enforceSchema", "inferSchema", "samplingRatio", "ignoreLeadingWhiteSpace",
"ignoreTrailingWhiteSpace", "nullValue", "emptyValue", "nanValue", "positiveInf",
"negativeInf", "dateFormat", "timestampFormat", "maxColumns", "maxCharsPerColumn",
"mode", "columnNameOfCorruptRecord", "multiLine"
);
private final transient DFSPathSelector pathSelector;
private final StructType sourceSchema;
public CsvDFSSource(TypedProperties props,
JavaSparkContext sparkContext,
SparkSession sparkSession,
SchemaProvider schemaProvider) {
super(props, sparkContext, sparkSession, schemaProvider);
this.pathSelector = DFSPathSelector.createSourceSelector(props, sparkContext.hadoopConfiguration());
if (schemaProvider != null) {
sourceSchema = (StructType) SchemaConverters.toSqlType(schemaProvider.getSourceSchema())
.dataType();
} else {
sourceSchema = null;
}
}
@Override
protected Pair