All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.iceberg.spark.functions.BucketFunction Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.iceberg.spark.functions;

import java.math.BigDecimal;
import java.nio.ByteBuffer;
import java.util.Set;
import org.apache.iceberg.relocated.com.google.common.collect.ImmutableSet;
import org.apache.iceberg.util.BucketUtil;
import org.apache.spark.sql.catalyst.InternalRow;
import org.apache.spark.sql.connector.catalog.functions.BoundFunction;
import org.apache.spark.sql.connector.catalog.functions.ScalarFunction;
import org.apache.spark.sql.connector.catalog.functions.UnboundFunction;
import org.apache.spark.sql.types.BinaryType;
import org.apache.spark.sql.types.ByteType;
import org.apache.spark.sql.types.DataType;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.DateType;
import org.apache.spark.sql.types.Decimal;
import org.apache.spark.sql.types.DecimalType;
import org.apache.spark.sql.types.IntegerType;
import org.apache.spark.sql.types.LongType;
import org.apache.spark.sql.types.ShortType;
import org.apache.spark.sql.types.StringType;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.sql.types.TimestampType;
import org.apache.spark.unsafe.types.UTF8String;

/**
 * A Spark function implementation for the Iceberg bucket transform.
 *
 * 

Example usage: {@code SELECT system.bucket(128, 'abc')}, which returns the bucket 122. * *

Note that for performance reasons, the given input number of buckets is not validated in the * implementations used in code-gen. The number of buckets must be positive to give meaningful * results. */ public class BucketFunction implements UnboundFunction { private static final int NUM_BUCKETS_ORDINAL = 0; private static final int VALUE_ORDINAL = 1; private static final Set SUPPORTED_NUM_BUCKETS_TYPES = ImmutableSet.of(DataTypes.ByteType, DataTypes.ShortType, DataTypes.IntegerType); @Override public BoundFunction bind(StructType inputType) { if (inputType.size() != 2) { throw new UnsupportedOperationException( "Wrong number of inputs (expected numBuckets and value)"); } StructField numBucketsField = inputType.fields()[NUM_BUCKETS_ORDINAL]; StructField valueField = inputType.fields()[VALUE_ORDINAL]; if (!SUPPORTED_NUM_BUCKETS_TYPES.contains(numBucketsField.dataType())) { throw new UnsupportedOperationException( "Expected number of buckets to be tinyint, shortint or int"); } DataType type = valueField.dataType(); if (type instanceof DateType) { return new BucketInt(type); } else if (type instanceof ByteType || type instanceof ShortType || type instanceof IntegerType) { return new BucketInt(DataTypes.IntegerType); } else if (type instanceof LongType) { return new BucketLong(type); } else if (type instanceof TimestampType) { return new BucketLong(type); } else if (type instanceof DecimalType) { return new BucketDecimal(type); } else if (type instanceof StringType) { return new BucketString(); } else if (type instanceof BinaryType) { return new BucketBinary(); } else { throw new UnsupportedOperationException( "Expected column to be date, tinyint, smallint, int, bigint, decimal, timestamp, string, or binary"); } } @Override public String description() { return name() + "(numBuckets, col) - Call Iceberg's bucket transform\n" + " numBuckets :: number of buckets to divide the rows into, e.g. bucket(100, 34) -> 79 (must be a tinyint, smallint, or int)\n" + " col :: column to bucket (must be a date, integer, long, timestamp, decimal, string, or binary)"; } @Override public String name() { return "bucket"; } public abstract static class BucketBase implements ScalarFunction { public static int apply(int numBuckets, int hashedValue) { return (hashedValue & Integer.MAX_VALUE) % numBuckets; } @Override public String name() { return "bucket"; } @Override public DataType resultType() { return DataTypes.IntegerType; } } // Used for both int and date - tinyint and smallint are upcasted to int by Spark. public static class BucketInt extends BucketBase { private final DataType sqlType; // magic method used in codegen public static int invoke(int numBuckets, int value) { return apply(numBuckets, hash(value)); } // Visible for testing public static int hash(int value) { return BucketUtil.hash(value); } public BucketInt(DataType sqlType) { this.sqlType = sqlType; } @Override public DataType[] inputTypes() { return new DataType[] {DataTypes.IntegerType, sqlType}; } @Override public String canonicalName() { return String.format("iceberg.bucket(%s)", sqlType.catalogString()); } @Override public Integer produceResult(InternalRow input) { // return null for null input to match what Spark does in the code-generated versions. if (input.isNullAt(NUM_BUCKETS_ORDINAL) || input.isNullAt(VALUE_ORDINAL)) { return null; } else { return invoke(input.getInt(NUM_BUCKETS_ORDINAL), input.getInt(VALUE_ORDINAL)); } } } // Used for both BigInt and Timestamp public static class BucketLong extends BucketBase { private final DataType sqlType; // magic function for usage with codegen - needs to be static public static int invoke(int numBuckets, long value) { return apply(numBuckets, hash(value)); } // Visible for testing public static int hash(long value) { return BucketUtil.hash(value); } public BucketLong(DataType sqlType) { this.sqlType = sqlType; } @Override public DataType[] inputTypes() { return new DataType[] {DataTypes.IntegerType, sqlType}; } @Override public String canonicalName() { return String.format("iceberg.bucket(%s)", sqlType.catalogString()); } @Override public Integer produceResult(InternalRow input) { if (input.isNullAt(NUM_BUCKETS_ORDINAL) || input.isNullAt(VALUE_ORDINAL)) { return null; } else { return invoke(input.getInt(NUM_BUCKETS_ORDINAL), input.getLong(VALUE_ORDINAL)); } } } public static class BucketString extends BucketBase { // magic function for usage with codegen public static Integer invoke(int numBuckets, UTF8String value) { if (value == null) { return null; } // TODO - We can probably hash the bytes directly given they're already UTF-8 input. return apply(numBuckets, hash(value.toString())); } // Visible for testing public static int hash(String value) { return BucketUtil.hash(value); } @Override public DataType[] inputTypes() { return new DataType[] {DataTypes.IntegerType, DataTypes.StringType}; } @Override public String canonicalName() { return "iceberg.bucket(string)"; } @Override public Integer produceResult(InternalRow input) { if (input.isNullAt(NUM_BUCKETS_ORDINAL) || input.isNullAt(VALUE_ORDINAL)) { return null; } else { return invoke(input.getInt(NUM_BUCKETS_ORDINAL), input.getUTF8String(VALUE_ORDINAL)); } } } public static class BucketBinary extends BucketBase { public static Integer invoke(int numBuckets, byte[] value) { if (value == null) { return null; } return apply(numBuckets, hash(ByteBuffer.wrap(value))); } // Visible for testing public static int hash(ByteBuffer value) { return BucketUtil.hash(value); } @Override public DataType[] inputTypes() { return new DataType[] {DataTypes.IntegerType, DataTypes.BinaryType}; } @Override public Integer produceResult(InternalRow input) { if (input.isNullAt(NUM_BUCKETS_ORDINAL) || input.isNullAt(VALUE_ORDINAL)) { return null; } else { return invoke(input.getInt(NUM_BUCKETS_ORDINAL), input.getBinary(VALUE_ORDINAL)); } } @Override public String canonicalName() { return "iceberg.bucket(binary)"; } } public static class BucketDecimal extends BucketBase { private final DataType sqlType; private final int precision; private final int scale; // magic method used in codegen public static Integer invoke(int numBuckets, Decimal value) { if (value == null) { return null; } return apply(numBuckets, hash(value.toJavaBigDecimal())); } // Visible for testing public static int hash(BigDecimal value) { return BucketUtil.hash(value); } public BucketDecimal(DataType sqlType) { this.sqlType = sqlType; this.precision = ((DecimalType) sqlType).precision(); this.scale = ((DecimalType) sqlType).scale(); } @Override public DataType[] inputTypes() { return new DataType[] {DataTypes.IntegerType, sqlType}; } @Override public Integer produceResult(InternalRow input) { if (input.isNullAt(NUM_BUCKETS_ORDINAL) || input.isNullAt(VALUE_ORDINAL)) { return null; } else { int numBuckets = input.getInt(NUM_BUCKETS_ORDINAL); Decimal value = input.getDecimal(VALUE_ORDINAL, precision, scale); return invoke(numBuckets, value); } } @Override public String canonicalName() { return "iceberg.bucket(decimal)"; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy