org.apache.iceberg.spark.source.SparkScan Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark-3.3_2.13 Show documentation
Show all versions of iceberg-spark-3.3_2.13 Show documentation
A table format for huge analytic datasets
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.spark.source;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import org.apache.iceberg.ScanTaskGroup;
import org.apache.iceberg.Schema;
import org.apache.iceberg.Snapshot;
import org.apache.iceberg.SnapshotSummary;
import org.apache.iceberg.Table;
import org.apache.iceberg.expressions.Expression;
import org.apache.iceberg.relocated.com.google.common.base.Preconditions;
import org.apache.iceberg.spark.Spark3Util;
import org.apache.iceberg.spark.SparkReadConf;
import org.apache.iceberg.spark.SparkSchemaUtil;
import org.apache.iceberg.spark.SparkUtil;
import org.apache.iceberg.spark.source.metrics.NumDeletes;
import org.apache.iceberg.spark.source.metrics.NumSplits;
import org.apache.iceberg.types.Types;
import org.apache.iceberg.util.PropertyUtil;
import org.apache.iceberg.util.SnapshotUtil;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.connector.metric.CustomMetric;
import org.apache.spark.sql.connector.read.Batch;
import org.apache.spark.sql.connector.read.Scan;
import org.apache.spark.sql.connector.read.Statistics;
import org.apache.spark.sql.connector.read.SupportsReportStatistics;
import org.apache.spark.sql.connector.read.streaming.MicroBatchStream;
import org.apache.spark.sql.types.StructType;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
abstract class SparkScan implements Scan, SupportsReportStatistics {
private static final Logger LOG = LoggerFactory.getLogger(SparkScan.class);
private final JavaSparkContext sparkContext;
private final Table table;
private final SparkReadConf readConf;
private final boolean caseSensitive;
private final Schema expectedSchema;
private final List filterExpressions;
private final boolean readTimestampWithoutZone;
private final String branch;
// lazy variables
private StructType readSchema;
SparkScan(
SparkSession spark,
Table table,
SparkReadConf readConf,
Schema expectedSchema,
List filters) {
Schema snapshotSchema = SnapshotUtil.schemaFor(table, readConf.branch());
SparkSchemaUtil.validateMetadataColumnReferences(snapshotSchema, expectedSchema);
this.sparkContext = JavaSparkContext.fromSparkContext(spark.sparkContext());
this.table = table;
this.readConf = readConf;
this.caseSensitive = readConf.caseSensitive();
this.expectedSchema = expectedSchema;
this.filterExpressions = filters != null ? filters : Collections.emptyList();
this.readTimestampWithoutZone = readConf.handleTimestampWithoutZone();
this.branch = readConf.branch();
}
protected Table table() {
return table;
}
protected String branch() {
return branch;
}
protected boolean caseSensitive() {
return caseSensitive;
}
protected Schema expectedSchema() {
return expectedSchema;
}
protected List filterExpressions() {
return filterExpressions;
}
protected Types.StructType groupingKeyType() {
return Types.StructType.of();
}
protected abstract List extends ScanTaskGroup>> taskGroups();
@Override
public Batch toBatch() {
return new SparkBatch(
sparkContext, table, readConf, groupingKeyType(), taskGroups(), expectedSchema, hashCode());
}
@Override
public MicroBatchStream toMicroBatchStream(String checkpointLocation) {
return new SparkMicroBatchStream(
sparkContext, table, readConf, expectedSchema, checkpointLocation);
}
@Override
public StructType readSchema() {
if (readSchema == null) {
Preconditions.checkArgument(
readTimestampWithoutZone || !SparkUtil.hasTimestampWithoutZone(expectedSchema),
SparkUtil.TIMESTAMP_WITHOUT_TIMEZONE_ERROR);
this.readSchema = SparkSchemaUtil.convert(expectedSchema);
}
return readSchema;
}
@Override
public Statistics estimateStatistics() {
return estimateStatistics(SnapshotUtil.latestSnapshot(table, branch));
}
protected Statistics estimateStatistics(Snapshot snapshot) {
// its a fresh table, no data
if (snapshot == null) {
return new Stats(0L, 0L);
}
// estimate stats using snapshot summary only for partitioned tables
// (metadata tables are unpartitioned)
if (!table.spec().isUnpartitioned() && filterExpressions.isEmpty()) {
LOG.debug(
"Using snapshot {} metadata to estimate statistics for table {}",
snapshot.snapshotId(),
table.name());
long totalRecords = totalRecords(snapshot);
return new Stats(SparkSchemaUtil.estimateSize(readSchema(), totalRecords), totalRecords);
}
long rowsCount = taskGroups().stream().mapToLong(ScanTaskGroup::estimatedRowsCount).sum();
long sizeInBytes = SparkSchemaUtil.estimateSize(readSchema(), rowsCount);
return new Stats(sizeInBytes, rowsCount);
}
private long totalRecords(Snapshot snapshot) {
Map summary = snapshot.summary();
return PropertyUtil.propertyAsLong(summary, SnapshotSummary.TOTAL_RECORDS_PROP, Long.MAX_VALUE);
}
@Override
public String description() {
String groupingKeyFieldNamesAsString =
groupingKeyType().fields().stream()
.map(Types.NestedField::name)
.collect(Collectors.joining(", "));
return String.format(
"%s (branch=%s) [filters=%s, groupedBy=%s]",
table(), branch(), Spark3Util.describe(filterExpressions), groupingKeyFieldNamesAsString);
}
@Override
public CustomMetric[] supportedCustomMetrics() {
return new CustomMetric[] {new NumSplits(), new NumDeletes()};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy